В каком году появилось УЗИ

История развития ультразвуковой диагностики в акушерстве и гинекологии*

Корни развития УЗИ как диагностического метода исследования в акушерстве и гинекологии уходят еще в те времена, когда с помощью ультразвуковых (УЗ) волн измеряли расстояние под водой. Высокочастотный сигнал, не слышимый человеческим ухом, был сгенерирован английским ученым F. Galton в 1876 г.

Joseph Woo, доктор медицины; Королевский колледж акушеров и гинекологов (Royal College of Obstetricians and Gynаecologists, RCOG), Лондон, Великобритания; Колледж акушерства и гинекологии Медицинской академии Гонконга (Hong Kong Academy of Medicine, HKAM), Китай

Истоки
Прорывом в развитии УЗ технологий было открытие братьями P. и J. Curie пьезоэлектрического эффекта (Франция, 1880). Первая рабочая гидролокационная УЗ-система SОund Navigation Аnd Ranging (SONAR) была сконструирована в США в 1914 г.
Прародителем медицинского УЗИ была система RAdio Detection And Ranging (RADAR), изобретенная в 1935 г. британским физиком R. Watson-Watt. Такие радиолокационные системы были прямыми предшественниками последующих двухмерных гидролокационных и медицинских УЗ-систем, которые появились в конце 40-х годов XX столетия.
Еще одним направлением, предшествовавшим развитию УЗ в медицине, была начатая в 30-е годы разработка импульсных УЗ-дефектоскопов металла, которые использовались для проверки целостности металлических корпусов судов, танков и другой техники. Концепция детекции металлодефектов была разработана советским ученым С.Я. Соколовым в 1928 г., а конструирование первых УЗ-детекторов и их последующее совершенствование началось в 40-х годах в США, Великобритании, Германии, Франции, Японии и в ряде других стран (рис. 1).
Ультразвук в медицине
Впервые в медицине УЗ начали применять в качестве метода лечения в конце 20-х – начале 30-х годов.
В 40-х годах УЗ использовали с целью облегчения боли при артритах, язвенной болезни желудка, в лечении экземы, астмы, тиреотоксикоза, геморроя, недержания мочи, элефантиаза и даже стенокардии (рис. 2).
Применение УЗ в качестве диагностического метода обнаружения опухолей, экссудатов и абсцессов в 1940 г. впервые предложили немецкие клиницисты H. Gohr и T. Wedekind. По их мнению, такая диагностика могла основываться на отражении УЗ-волны от патологических объемных образований головного мозга (принцип работы дефектоскопа металлов). Однако они так и не смогли опубликовать убедительных результатов своих экспериментов, в связи с чем их исследования не имели популярности.
В 1950 г. американские нейрохирурги W. Fry и R. Meyers использовали УЗ для разрушения базальных ганглиев у пациентов с болезнью Паркинсона. УЗ-энергию с успехом начали применять в терапии и в реабилитационной медицине. Так, J. Gersten (1953) использовал УЗ для лечения больных с ревматоидным артритом.
Ряд других клиницистов (P. Wells, D. Gordon, Великобритания; M. Arslan, Италия) применяли УЗ-энергию в лечении болезни Меньера.
Основателем диагностического УЗИ считается австрийский невролог, психиатр K.T. Dussik, впервые применивший УЗ с диагностической целью. Он определял местонахождение опухолей головного мозга путем измерения интенсивности прохождения УЗ-волны сквозь череп (рис. 3). В 1947 г. К.Т. Dussik представил результаты исследований и назвал свой метод гиперфонографией.
Однако позже немецкий клиницист W. Guttner и соавт. (1952) патологию на таких УЗ-снимках расценили как артефакты, поскольку К.Т. Dussik за патологические образования принимал ослабление отражений УЗ-волны от костей черепа.
G. Ludwig (США, 1946) проводил эксперименты на животных по выявлению инородных тел (в частности конкрементов в желчном пузыре) с помощью УЗ-волн (рис. 4). Через три года результаты его исследований были официально обнародованы. При этом автор отметил, что отражение УЗ-волн от мягких тканей мешает достоверной интерпретации полученных результатов такой УЗД. Однако, несмотря на это, исследования G. Ludwig внесли определенный вклад в развитие УЗД в медицине, в ходе которых ученый сделал ряд важных открытий. Он, в частности, определил, что диапазон скорости передачи ультразвука в мягких тканях животных составляет 1490-1610 м/сек (в среднем 1540 м/сек). Эта величина УЗ-волны и сегодня используется в медицине. Оптимальная частота УЗ, согласно данным исследователя, составляет 1-2,5 МГц.
Английский хирург J.J. Wild в 1950 г. начал исследование возможности применения УЗ для диагностики хирургической патологии – кишечной непроходимости. Работая в США совместно с инженером D. Neal, он обнаружил, что злокачественные опухоли желудка обладают большей эхогенной плотностью по сравнению со здоровой тканью.
Год спустя американский радиолог D. Howry с коллегами (директором лаборатории медицинских исследований J. Homles и инженерами W.R. Bliss, G.J. Posakony) разработали УЗ-сканер с полукруглой кюветой, имеющей окно. Пациента пристегивали ремнем к пластмассовому окну, и он должен был оставаться неподвижным в течение длительного времени исследования. Аппарат назывался сомаскоп, сканировал органы брюшной полости, а полученные результаты получили название сомаграммы.
Вскоре этими же исследователями (1957) был разработан кюветный сканер. Пациент сидел в видоизмененном стоматологическом кресле и был закреплен напротив пластмассового окна полукруглой кюветы, заполненной солевым раствором (рис. 5).
В 1952 г. в США был основан American Institute of Ultrasound in Medicine (AIUM).
Некоторое время спустя, в 1962 г., J. Homles вместе с инженерами сконструировали рычажный сканер, который уже мог перемещаться над пациентом при ручном управлении оператором (рис. 6).
В 1963 г. в США был разработан первый контактный сканер, управляемый рукой. Это было начало этапа становления наиболее популярных статических УЗ-аппаратов в медицине (рис. 7).
С 1966 г. AIUM начал проводить аккредитацию ультразвуковой практики. Чтобы получить лицензию на такую практику в акушерстве и гинекологии, врач должен был осуществлять интерпретацию как минимум 170 УЗ-снимков в год.
В 1966 г. в Вене состоялся первый Всемирный конгресс УЗ-диагностики в медицине, второй – в 1972 г. в Роттердаме. В 1977 г. было основано Британское медицинское общество ультразвука (British Medical Ultrasound Society, BMUS).
Таким образом, с конца 50-х годов прошлого века в разных странах – США, Германии, Великобритании, Австралии, Швеции, Японии – начали проводиться исследования по возможности применения УЗ с целью диагностики заболеваний. В основе их проведения использовались принципы гидролокации (A-режим УЗ-волн) и радиолокации (B-режим).

Ультразвуковая диагностика в СССР
Исследования по использованию УЗД в медицине проводились также и в СССР. В 1954 г. на базе Акустического института АН СССР было создано отделение ультразвука под руководством профессора Л. Розенберга. Первые упоминания об использовании УЗД в терапии датируются 1960-м годом.
Научно-исследовательский институт медицинских инструментов и оборудования СССР выпускал экспериментальные УЗ-аппараты Ekho-11, Ekho-12, Ekho-21, UZD-4 (1960); UZD-5 (1964); UTP-1, UDA-724, UDA-871 и Obzor-100 (начало 70-х годов). Эти модели предназначались для использования в офтальмологии, неврологии, кардиологии и в ряде других областей медицины, однако, согласно распоряжению правительства, так и не были внедрены в практическую медицину. И только с конца 80-х годов УЗД начала постепенно внедряться в советскую медицину.
Ультразвук в акушерстве и гинекологии
Использование УЗД в акушерстве и гинекологии начинается с 1966 г., когда происходит активное становление и развитие центров по применению УЗ в различных сферах медицины в США, в странах Европы и в Японии.
Первопроходцем в области гинекологической УЗД стал австрийский врач A. Kratochwil. В 1972 г. он успешно продемонстрировал возможность визуализации овариальных фолликулов с помощью УЗ (рис. 8) и вскоре стал наиболее известным УЗ-диагностом того времени.

Трансвагинальное сканирование
В 1955 г. J.J. Wild (Великобритания) и J.M. Reid (США) применили А-режим для трансвагинального и трансректального УЗ-сканирования. В начале 60-х годов A. Kratochwil представил свое исследование сердцебиения плода на 6-й неделе гестации с помощью трансвагинального датчика (рис. 9). Одновременно этот метод УЗИ был представлен L. von Micsky в Нью Йорке.
В Японии в 1963 г. S. Mizuno, H. Takeuchi, K. Nakano и соавт. предложили новую версию A-режимного трансвагинального сканера. Первое сканирование беременности с его помощью было проведено на сроке 6 нед гестации.
В 1967 г. в Германии компанией Siemens был разработан первый УЗ-сканер, использующий В-режим для диагностики патологии органов брюшной полости и малого таза, который с успехом начал применяться в гинекологии.
Уже в начале 70-х годов УЗИ в гинекологии применяли для диагностики твердых, полостных и смешанных образований другой различной патологии органов таза. Так, немецкие исследователи B.-J. Hackelоer и М. Hansmann успешно диагностировали с помощью В-режима количественные и качественные изменения фолликулов на протяжении овариального цикла. Условием для проведения успешной УЗД органов малого таза был полный мочевой пузырь.
Открывшаяся возможность проведения сонографии плода ознаменовала собой новый этап в развитии акушерства и пренатальной диагностики.
Австралийские клиницисты G. Kossoff и W. Garrett в 1959 г. представили контактный водный эхоскоп CAL (рис. 10), с помощью которого можно было проводить исследование грудной клетки плода. Этот УЗ-аппарат использовался с целью выявления пороков развития плода.
В 1968 г. Garrett, Robinson и Kossoff одними из первых опубликовали работу «Анатомия плода, отображаемая с помощью УЗИ», а два года спустя представили первую работу, посвященную УЗ-диагностике пороков развития плода, где описали поликистоз почек, выявленный у плода на 31-й неделе гестации (рис. 11).
В 1969 г. был выпущен эхоскоп CAL с серой шкалой.
В 1975 г. был сконструирован водный сканер с высокочувствительным датчиком – UI Octoson (рис. 12).
В начале 60-х годов при проведении акушерского УЗИ (Европа, США, Япония, Китай, Австралия) использовался А-режим, с помощью которого определяли признаки беременности (измеряли сердцебиение плода), локализацию плаценты, выполняли цефалометрию. В 1961 г. I. Donald (Великобритания) предложил измерять бипариетальный диаметр (biparietal diameter, BРD) головки плода (рис. 13). В этом же году он описал случай гидроцефалии у плода.

В-режим
В 1963 г. I. Donald и MacVicar (Великобритания) впервые описали изображение плодных оболочек, полученное с помощью В-режима УЗИ. По измерениям диаметров плодных оболочек L.M. Hellman и M. Kobayashi (Япония) в 1969 г. определяли признаки доношенности плода, а P. Joupilla (Финляндия), S. Levi (Бельгия) и E. Reinold (Австрия) в 1971 г. – связь с ранними осложнениями беременности. В 1969 г. Kobayashi описал УЗ-признаки внематочной беременности с помощью В-режима УЗД.
Несмотря на то что ряд акушеров-гинекологов определяли сердечную деятельность плода с помощью А-режима (Kratochwil в 1967 г. с помощью вагинального A-сканирования на сроке 7 нед; Bang и Holm в 1968 г. с помощью А- и M-режимов на сроке 10 нед), практическое применение УЗИ в акушерстве для определения сердечной деятельности плода началось с 1972 г., когда H. Robinson (Великобритания) представил результаты проведенной им эхографии плода на сроке гестации 7 нед.
В-режимная плацентография была успешно описана в 1966 г. Денверской группой исследователей (США) (рис. 14).
В 1965 г. американский ученый H. Thompson описал способ измерения торакальной окружности (thoracic circumference, ТС) как метод определения роста плода (рис. 15). При этом погрешность его измерений составила около 3 см у 90% от общего числа проведенных исследований. H. Thompson также разработал метод определения массы тела плода по BРD и ТС, погрешность которого составляла около 300 г у 52% детей.
Одним из наиболее известных исследователей УЗД в акушерстве является английский профессор S. Campbell. В 1968 г. он опубликовал труд «Усовершенствование УЗ-методов цефалометрии плода», где описал использование А- и В-режимов для измерения BРD головки плода. Эта работа стала стандартом для практического УЗИ в акушерстве в последующие 10 лет.
В 1972 г. с помощью В-режимного УЗИ ученый диагностировал на сроке 17 нед анэнцефалию плода, в 1975 г. – spina bifida. Это были первые правильно определенные с помощью УЗИ патологии, которые явились показанием к прерыванию беременности. В 1975 г. S. Campbell et al. предложили измерение абдоминальной окружности (abdominal circumference, АС) с целью определения массы тела и степени развития плода (рис. 16).
Клиницисты M. Mantoni и J. Pederson (Дания) первыми описали возможность визуализации желточного мешка с помощью В-режима; E. Sauerbrei и P. Cooperberg (Канада) с помощью УЗИ визуализировали желточный мешок; немецкие исследователи M. Hansmann и J. Hobbins одними из первых изучали пороки развития плода с помощью УЗИ.
Инновацией, которая кардинально изменила развитие практической УЗД, явилось изобретение сканеров, работающих в режиме реального времени. Первый такой аппарат под названием Vidoson разработали немецкие исследователи W. Krause и R. Soldner (совместно с J. Paetzold и O. Kresse). Он был выпущен в 1965 г. в Германии компанией Siemens Medical Systems и делал в секунду 15 снимков, которые позволяли фиксировать движения плода (рис. 17). В 1968 г. с помощью этого сканера немецкие клиницисты D. Holander и H. Holander диагностировали 9 случаев отека плода.
В 1977 г. C. Kretz (Австрия) разработал УЗ-аппарат Combison 100 (рис. 18), который начала производить компания KretzTechnik. Это был циркулярный ротационный сканер, работающий в режиме реального времени и рассчитанный на проведение УЗИ органов брюшной полости и других частей тела.
Американский клиницист J. Hobbins в 1979 г. с помощью сканера, работающего в режиме реального времени, измерил длину бедра плода. На основании этого G. O’Brien и J. Queenan (США) в том же году смогли определить наличие такой патологии развития плода, как скелетная дисплазия. Доктор медицины P. Jeanty (США) в 1984 г. составил таблицу всех размеров костей плода при развитии.
В начале 80-х годов был сконструирован статический сканер, позволяющий быстро делать снимки высококачественного разрешения.
В то время в мире насчитывалось около 45 больших и малых предприятий-производителей УЗД-техники.
Следует отметить, что в конце 70-х – в начале 80-х годов были созданы небольшие портативные УЗД-сканеры (минивизоры и др.), представляющие собой переносные аппараты, которые могли использоваться для диагностики непосредственно у постели больного, в т.ч. на дому (рис. 19).
Допплер-ультразвуковое исследование
Как известно, сущность эффекта Допплера заключается в изменении частоты волн при отражении от движущегося объекта. Это явление впервые описал более 100 лет тому назад австрийский математик и физик C. Doppler (1842). УЗ-допплер как метод диагностического исследования в медицине был представлен в 1955 г. японскими учеными S. Satomura и Y. Nimura, которые исследовали с его помощью работу клапанов сердца и пульсацию периферических сосудов. Спустя семь лет их соотечественники Z. Кaneko и K. Kato установили, что с помощью метода УЗ-допплера можно определять направление тока крови.
Изучение допплер-эффекта в 60-е годы проводилось также в США, Великобритании и в других странах.
В практическом акушерстве и гинекологии эффект Допплера начал использоваться несколько позже. В 1964 г. в США D.A. Callagan впервые применил этот метод диагностики для определения пульсации артерий плода. Через год американский гинеколог W. Johnson с помощью эффекта Допплера со 100-процентной точностью определила возраст эмбрионального развития у 25 плодов (срок 12 нед). Еще год спустя E. Bishop с помощью допплер-УЗИ на третьем триместре беременности установил место прикрепления плаценты у 65% обследованных им женщин. В том же году D.A. Callagan и соавт. описали сердцебиение плода по кардиальным допплер-сигналам.
В 1968 г. японцы H. Takemura и Y. Ashitaka описали характер и скорость кровотока в умбиликальной артерии и вене, а также плацентарный кровоток (рис. 20).
P. Jouppila и P. Kirkinen (Финляндия) в 1981 г. выявили зависимость между уменьшением скорости кровотока в пупочной вене и замедлением роста плода. В 1983 г. S. Campbell выявил диагностическую ценность параметров маточного и плацентарного кровотока в диагностике преэклампсии.
Последующее развитие допплер-УЗИ было связано с цветным сканированием. M. Brandestini и соавт. (США) в 1975 г. разработали 128-точечную мультиимпульсную допплер-систему, где скорость и направление кровотока демонстрировались в цвете (рис. 21).
Французский клиницист L. Pourcelot в 1977 г. также в числе первых описал цветное допплер-УЗИ. Однако активное развитие допплер-УЗИ как диагностического метода в медицине началось в 80-е годы с появлением новых, более совершенных технологий.
Внедрение допплер-УЗИ в гинекологическую практику началось с середины 80-х годов, когда K. Taylor (США) описал кровоток в овариальных и маточных артериях, а A. Kurjak (Югославия) применил трансвагинальный цветной допплер в диагностике тазового кровотока.
Развитие двухмерного и цветного допплер-УЗИ было почти одновременным и происходило в конце 80-х годов. В начале 1990 г. A. Fleischer (США) одним из первых с помощью цветного трансвагинального допплера описал васкуляризацию рака яичника.
Совершенствование качества УЗИ продолжалось в течение 80-90 годов благодаря развитию микропроцессорной технологии (рис. 22). В это время УЗД стали активно применять в различных областях медицины, в т.ч. в акушерстве и гинекологии. Согласно статистике FDA (Food and Drug Administration), в США с 1976 по 1982 г. частота использования УЗД в медицинских учреждениях возросла с 35 до 97%.
Таким образом, в 1975 г., до разработки сканеров реального времени, в США было пять показаний к проведению УЗД в акушерстве: измерение BРD, определение объема амниотической жидкости, диагностика ранних осложнений беременности, сроков гестации и положения плаценты. С 80-х годов перечень таких показаний очень расширился. Так, были разработаны стандарты для определения внутриутробного возраста и развития плода по результатам УЗИ путем определения следующих параметров: длины крестец-темя (CRL), окружности головы (НС), длины бедра (FL), BPD, АС. Определение ряда других параметров проводилось в случаях нарушения развития плода.
В последующие годы были разработаны нормограммы для оценки роста и развития плода по следующим параметрам: бинокулярному диаметру (K. Mayden, P. Jeanty et al., 1982), окружности бедра (Deter et al., 1983), длине ключицы (Yarkoni et al., 1985) и стопы (В. Mercer et al., 1987), по фракционным размерам позвоночника (D. Li et al., 1986) и ушной раковины (J.C. Birnholz et al., 1988).
С изобретением УЗ-сканеров реального времени были диагностированы многие пороки развития плода. Однако разрешающая возможность УЗ-аппаратов того времени позволяла визуализировать эту патологию только на поздних сроках беременности. В 1981 г. Stephenson опубликовал обзор, описывающий около 90 разных пороков развития плода, которые можно определить при УЗИ. К аномалиям развития, непосредственно диагностируемым с помощью УЗИ, в те времена относили анэнцефалию, гидроцефалию, грыжу пупочного канатика, дуоденальную атрезию, поликистоз почек, отек плода, дисплазию конечностей. Трудности для УЗ-сканирования представляли лицевая область плода, конечности и сердце. С появлением сканеров более высокой разрешающей способности и трансвагинальных датчиков диагностика патологии развития плода упростилась, и пороки уже можно было определять не в третьем триместре беременности, а во втором и в первом.
Также стало возможным определение телодвижений плода и его дыхательных движений (fetal breathing movements, FBM). Проводить сканирование FBM впервые предложили исследователи G. Dawes и K. Boddy (Великобритания) в начале 70-х годов. При этом наличие или отсутствие дыхательных движений, их амплитуда и интервалы свидетельствовали о состоянии плода. Однако УЗИ FBM не приобрело популярности в дальнейшем.
В начале 80-х годов гинекологами разных стран был проведен и представлен ряд исследований, посвященных развитию фолликулов и процессу овуляции. Трансвагинальное сканирование, интенсивное внедрение которого в гинекологическую практику началось в середине 80-х годов, позволило увидеть противоположную поверхность матки, недоступную при обычном УЗИ, а также дало возможность более точно изучить циклы овуляции. Однако разрешающая способность УЗИ как метода визуализации эндометрия и фолликулов в те годы еще не позволяла полноценно определить момент овуляции с целью предупреждения беременности.
Трансвагинальное УЗИ явилось неотъемлемой частью диагностики непальпируемых образований, асцита, маточных и цервикальных изменений, ранней беременности, наличия и правильности введения внутриматочных конрацептивов. С конца 80-х УЗИ (особенно с появлением цветного трансвагинального сканирования) стало ценным методом диагностики эктопической беременности, рака яичников и эндометрия; вагинальное УЗИ – незаменимым методом диагностики в области репродуктологии; спектральное допплер-УЗИ (измерение скорости кровотока с помощью допплера) – стандартным исследованием.
В 1983 г. S. Campbell описал частотный индексный профиль допплер-сканирования плода. Год спустя P. Reuwer (Нидерланды) впервые выявил такой неблагоприятный признак развития плода, как отсутствие конечного диастолического тока крови в умбиликальной артерии. Дальнейшими исследованиями последователями S. Campbell установлена прогностическая важность такого признака, как отсутствие конечного диастолического тока крови в нисходящей части аорты плода. Позже с помощью допплер-УЗД в акушерстве были сделаны другие важные открытия. В итоге стандартом для выявления кислородного голодания плода (аноксии) стало УЗ-допплер-исследование пупочной артерии; средней мозговой артерии – для определения признаков декомпенсации; венозного протока – для диагностики ацидоза, сердечной недостаточности и угрозы внутриутробной гибели плода. Также с его помощью на ранних сроках определяли риск маточно-плацентарной недостаточности и преэклампсии у беременной.
В 1985 г. клиницист D. Maulik и профессор кардиологии N. Nanda (США) с помощью допплер-УЗИ описали интракардиальный ток крови. В 1987 г. американский исследователь G. Devore создал цветную допплер-карту тока крови для оценки пороков плода на практике. Применение цветного допплера позволило сделать УЗД пороков сердца плода более информативной. В конце 90-х точность таких диагнозов превышала 95%.
В 1989 г. группа последователей S. Campbell опубликовала масштабный труд о проведенном 5-летнем УЗ-скрининге как одном из способов предупреждения овариального рака. Его результаты показали значительную роль УЗИ как метода своевременной диагностики рака и возможность его использования в качестве профилактического скрининга данной патологии.
Как уже отмечалось выше, появление новых, более современных технологий в 90-х годах дало мощный толчок к развитию УЗД в медицине.
M. Cullen (США) первым в 1990 г. представил работу по изучению большой серии врожденных аномалий развития плода в первом триместре, определенных с помощью трансвагинального УЗИ. В те же годы благодаря активному внедрению в акушерскую практику трансвагинального сканирования, начала активно развиваться соноэмбриология.
УЗИ как популярный и востребованный метод диагностики способствовал проведению ряда популяционных скрининговых программ в 1970-1990 гг. Первой из них стала программа скрининга материнского сывороточного a-фетопротеина (Maternal serum alpha-fetoprotein, MSAFP) с целью выявления дефектов закладки нервной трубки. Она стартовала в Великобритании в конце 70-х. Вторым было рутинное исследование плода на сроке 20 нед в рамках программы антенатальной заботы. Также был проведен ряд других различных УЗ-скрининговых исследований в США, Великобритании, ФРГ, Швеции, Норвегии, Финляндии и в других странах Европы.
Уже в конце 90-х годов в странах Европы и США УЗД стала стандартным исследованием, с помощью которого определяли срок беременности, исключали двойню, выявляли пороки развития плода.
Следует отметить, что УЗИ стало также методом диагностики стигм развития и признаков хромосомных аномалий. Скрининг базировался на определении различных УЗ параметров таких аномалий. Так, начала активно развиваться УЗ-диагностика такой хромосомной аномалии, как синдром Дауна. Впервые прозрачность затылочной кости плода на сроке 15-20 нед как признак синдрома Дауна описала B. Benacerraf (США) в 1985 г. Позже она опубликовала перечень УЗ биометрических маркеров этой патологии.

Трехмерное УЗИ
С развитием компьютерных технологий начали совершенствоваться исследования, посвященные трехмерной УЗД. Первым о возможности проведения трехмерного УЗИ сообщил K. Baba (Япония) в 1984 г., а через два года он получил трехмерные снимки с помощью двухмерного УЗ-аппарата (рис. 23). Вскоре его исследования начали внедряться в практику. В 1992 г. K. Baba опубликовал первую книгу, посвященную УЗИ в акушерстве и гинекологии, в которую вошел раздел о трехмерном сканировании.
Группа исследователей под руководством D. King (США) в 1990 г., в отличие от японских ученых, описала несколько другой алгоритм трехмерного УЗИ. В 1992 г. тайванские клиницисты Kuo, Chang и Wu визуализировали путем трехмерного УЗИ лицо, мозжечок и шейный отдел позвоночника плода с помощью сканера Combison 330, который был создан в 1989 г. и являлся первым трехмерным УЗ-аппаратом. Вскоре в середине 90-х в Японии начали производить трехмерные УЗ-аппараты. В 1993 г. австрийский ученый W. Feichtinger выполнил исследование эмбриона на сроке 10 нед с помощью трехмерного трансвагинального УЗИ. В последующие годы трехмерное УЗИ стало одним из важных методов исследования в акушерстве и гинекологии. В 1996 г. группа последователей Nelson и ученые из College Hospital (Великобритания) опубликовали независимое исследование, посвященное четырехмерной (движущейся трехмерной) эхокардиографии плода.
Трехмерная УЗД по сравнению с двухмерной имела ряд диагностических преимуществ, поскольку она дала возможность определять ряд аномалий развития плода: расщепление губы, полидактилию, микрогнатию, пороки развития уха, позвоночника и другую патологию развития, которую можно выявить по внешнему виду плода. Развитие трансвагинального трехмерного УЗИ позволило расширить диагностические возможности ультрасонографии как диагностического метода ранних этапов развития плода.
Австрийский акушер-гинеколог A. Lee вместе с группой последователей Kratochwil в 1994 г. изучил точность оценки массы тела плода с помощью трехмерного УЗИ и исправил ошибки соответствующих измерений двухмерного УЗИ. О пользе трехмерного УЗИ как диагностического метода в гинекологической практике свидетельствовала работа D. Jurkovic (Великобритания). В 1995 г. с помощью этого метода он диагностировал различную маточную патологию – двурогую матку, перегородки в матке и т.п.
Группа ученых из Тайваня во главе с F.-M. Chang в 1997 г. представили способ определения массы тела плода при рождении с помощью трехмерного УЗ-измерения верхней конечности плода. Год спустя H.-G. Blaas (Норвегия) опубликовал работу, посвященную трехмерному исследованию процессов эмбриогенеза, чем подтвердил важность данного метода исследования в эмбриологии.
Методом трехмерной гистерографии в 90-х годах начали изучать эндометриальную ткань, проводить диагностику эндометриальных образований, спаек, гидросальпингитов, кист яичников, небольших внутриматочных опухолей и других аномалий женских половых органов. Согласно работам испанского клинициста Bonilla-Musoles, точность диагностики злокачественных новообразований яичника, определенных с помощью трехмерного УЗИ, составляет почти 100% по сравнению с двухмерным.
Цветное допплеровское трехмерное УЗИ позволило визуализировать кровоток опухолей и поэтому стало действенным методом диагностики рака шейки матки и яичников.
Как видим, УЗИ является достаточно новой, но уже неотъемлемой частью диагностики в акушерстве и гинекологии. Всего лишь в течение нескольких десятков лет применение УЗ в медицине претерпело выраженные изменения: от диагностики наличия жизни в полости матки до измерения размеров плода; от определения морфологии плода до оценки его кровотока и динамики развития. На сегодня УЗД продолжает активно развиваться и совершенствоваться.

УЗИ — ультразвуковое исследование — метод диагностики, который на сегодняшний день является одним из основных инструментов современной медицины и применяется практически во всех её областях. Будучи довольно молодым методом, УЗИ диагностика совершила настоящий переворот, обеспечив врачей мощным, быстрым, безопасным, информативным и достоверным инструментом обследования пациентов для выявления широкого круга заболеваний.

Но как ультразвук попал в арсенал медиков и что этому предшествовало? Об этом и расскажет этот небольшой обзор.

Открытие ультразвука и пьезоэлектриков

С давних времён учёные-исследователи в области физики, математики, материаловедения, позднее в электронике, пытались проникнуть за грань материального.

Ещё Леонардо да Винчи в XV веке погружал в жидкость трубку, пытаясь определить движение и скорость движущихся навстречу друг другу кораблей. Так со временем появился ультразвук, которым стали пользоваться во многих сферах, с том числе в медицине, сначала в диагностике, а затем и в лечении. Что же такое ультразвук? Ультразвук – это упругие колебания с частотами выше диапазона слышимости человека (20 кГц), распространяющиеся в виде волны в газах, жидкостях и твёрдых телах или образующее в ограниченных областях этих сред стоячие волны.

В XIX веке ультразвук произвёл настоящий бум в среде исследователей, объединив усилия учёных различных областей. Например, швейцарский физик Жан – Даниел и математик Чарльз Штурм, занимаясь проблемами скорости звука в воде, внесли немалый вклад в развитие гидролокатора. Учёный Калладон в результате своих экспериментов сумел определить скорость звука в воде. Благодаря этому родилась гидроакустика.

В конце XIX века, в 1877 году, Джон Уильям Струтт разработал теорию звука, которая и явилась основой науки об ультразвуке. Тремя годами позже открытие учёных Пьера и Жака Кюри привело к развитию ультразвукового преобразователя. Их открытие пьезоэлектриков стало основой современного ультразвукового оборудования.

В XX веке исследования в области ультразвука были продолжены. Благодаря «сверхзвуковому рефлектоскопу», разработанному в первой половине 20 века учёными Спроулом, Фаярстоуном и Спер стало возможным обнаруживать дефекты в металле, что нашло своё применение в промышленности.

Во второй половине XX века учёные – исследователи Генри Хугес, Кельвин, Боттомли и Баярд изготовили металлический дефектоскоп, а Том Броун с Яном Дональдом разработали первую в мире контактную ультразвуковую машину. Кроме этого, Яну Дональду принадлежит заслуга в исследовании клинических областей использования ультразвука.

Гидролокация

Вначале следует пояснить, что же такое гидролокатор. Гидролокатор – это прибор, который обнаруживает объекты, находящиеся под водой, при помощи эха. Гидролокационная установка обладает приёмником, который принимает эхо на себя и информирует о предметах, находящихся под водой. Таким образом, благодаря учёным Элру Бэму (Австрия-1912г.), Левису Ричардсону (Англия – 1912 г.), Реджинальду Фессендену (США — 1914 г.), создавшим в разное время и в разных странах эхолоты – гидролокаторы, стало возможным обнаружение айсбергов, что спасло тысячи человеческих жизней. Гидролокационные установки нашли своё применение в военной промышленности (например, для обнаружения подводных лодок), в речной и морской (для определения возможных препятствий, затонувших кораблей), в тяжёлой промышленности (для поисков залежей нефти) и т.д.

Выдающееся открытие в 1928 году в области ультразвукового дефектоскопа принесло признание русскому учёному С. Я. Соколову.

Первые опыты применения ультразвука в области медицины

Широкое применение ультразвук нашёл в области медицины как метод диагностики — УЗИ. По словам Яна Дональда, сказанным в 70-десятые годы, «медицинский гидролокатор весьма внезапно вырос и достиг совершеннолетия; фактически, его всплеск роста в пределах последних нескольких лет был почти взрывом». А начиналось это в далёкие пятидесятые годы 20 века. Американцы Холмс и Хоур, используя достижения в технических областях, первыми сканировали человека, погружая его в бак, изготовленный из башни от самолёта В29, с дегазованной водой, пропуская ультразвук вокруг оси 360 градусов, что и стало первой томограммой.

Открытие Йаффе привело к тому, что Тернер из Лондона, Лекселл из Швеции и Казнер из Германии использовали ультразвук для энцифалографии срединной линии головного мозга в целях обнаружения гематом, полученных в результате травмирования.

Инге Эдлер и Карл Хеллмут Герц стали пионерами в области эхокардиографии (ультразвуковой кардиографии).

В 1955 году Яном Дональдом и доктором Барром были проведены первые исследования опухолей, твёрдой и кистозной. При поддержке Яна Дональда инженер Том Браун создал прибор Mark 4, который дифференцировал твёрдые и кистозные опухоли, чем сумел спасти человеческую жизнь.

Интерес к УЗИ и ультразвуковой технике постоянно растёт, так как он проникает во все сферы человеческой деятельности.

История УЗИ

Один из соавторов блога, в числе прочего, трудится научным редактором нового портала о науке Indicator.Ru. Сегодня на сайте вышел материал об УЗИ с большой исторической частью, написанной Алексеем Паевским. Мы с удовольствием делимся этим материалом.

Немного истории
Прежде чем рассказать об истории появления ультразвукового исследования, нужно упомянуть два важнейших открытия, без которых этого метода не было бы.
Первым нужно вспомнить выдающегося итальянского естествоиспытателя и натуралиста Ладзаро Спалланцани, жившего в XVIII веке. Как и многие ученые того времени, он был весьма многосторонен: заложил основы современной метеорологии и вулканологии, провел процедуру ЭКО у лягушек и искусственного осеменения у собак. Кроме того, Спалланцани показал, что, если заткнуть летучей мыши уши, она не сможет ориентироваться в пространстве. Ученый предположил, что рукокрылые животные испускают некий не слышимый нами звук, улавливают его эхо и на основании этого ориентируются в пространстве. Так был открыт ультразвук.
Второе открытие было сделано человеком, прославившимся своей женой и исследованием радиоактивности, — нобелевским лауреатом Пьером Кюри. В 1880 году вместе со своим старшим братом Жаком он открыл эффект возникновения электричества в кристаллах, которые сжимаются, — пьезоэлектрический эффект. Именно он является основой детекторов ультразвука в аппаратах УЗИ.
Дальше пришлось ждать 1941 года, когда австрийский невролог Карл Фредерик Дюссик в сотрудничестве со своим братом Фредериком сделал первое ультразвуковое исследование мозга. Дюссик «обнаружил» опухоль и в 1947 году опубликовал свой метод под названием гиперфонографии. Правда, через пять лет оказалось, что Дюссик принял за опухоль отражение ультразвука от костей черепа.
Англичанин Джон Уайлд первым использовал УЗИ для определения толщины тканей кишечника в 1949 году. За эту работу его назвали «отцом медицинского УЗИ». Впрочем, «отцов УЗИ» было много. Как и вариантов ранних аппаратов: для некоторых исследований человека погружали в ванну с водой, для других — на несколько часов прижимали к пластиковой кювете. Было и много пионерских работ. Так, в 1958 году впервые при помощи УЗИ определили размер головки плода, чем положили начало акушерскому применению ультразвука.
Первый же современный аппарат, в котором сканер и приемник ультразвука находились в руке врача, появился в 1963 году в США. С тех пор началась эпоха современного УЗИ. Медицинскую аккредитацию на такие исследования стал выдавать с 1967 года Американский институт ультразвуковой медицины (AIUM): чтобы получить разрешение на практику, врачу-гинекологу (а первые клинические применения начались именно в акушерстве и гинекологии) приходилось выполнять не менее 170 исследований в год. Увы, СССР в этом сильно отставал: несмотря на первые диагностические опыты, выполненные еще в 1960 году, в практику советской медицины УЗИ стало внедряться лишь в конце 1980-х годов.
О том, каким было первое оборудование для УЗИ, как оно развивалось, а также какие возможности исследования внутренних органов этот метод диагностики предлагает сейчас, рассказал Николай Кульберг, руководитель отдела разработки средств медицинской визуализации ГБУЗ «Научно-практический центр медицинской радиологии ДЗМ», кандидат физико-математических наук.
От 1D к 2D
Первые ультразвуковые диагностические приборы появились в середине ХХ века. По современной классификации их можно было назвать 1D-УЗИ. Это значит, что на выходе врач получал не «картинку» исследуемого органа, а график, похожий на тот, что получается при работе сейсмографа. Такой тип визуализации данных называется «А-режимом», или «А-scan ultrasonography».

Интенсивность ультразвука, измеренного на разных глубинах тканей
Николай Кульберг
Датчик прибора по форме напоминал карандаш, а на торце «карандаша» находился плоский пьезокерамический чувствительный элемент. Приложив этот элемент к телу пациента, можно было получить информацию о столбике тканей по направлению датчика. Результат исследования (А-линия, A-Line) отображался на экране осциллографа примерно так, как это показано выше. Впрочем, даже такие невыразительные, абстрактные графики могли дать врачу очень важные диагностические сведения: например, на данном рисунке видно, как измеряется интенсивность ультразвука, отраженного на разных глубинах тканей. Так, на глубинах от 0 до 3 см звук отражается хорошо, кроме того, отражающие слои есть и на глубинах 5 и 6 см. Соответственно, зная строение исследуемого органа, врач может предполагать, от чего именно отражается ультразвук.
В 70-е годы ХХ века в конструкцию «одномерного» датчика было внесено важное изменение: теперь чувствительный элемент можно было поворачивать с помощью шагового электродвигателя, так как он был закреплен на шарнире. Вращение происходило внутри небольшой буферной камеры, заполненной жидкостью. Эту камеру прикладывали к телу пациента. Вращающийся датчик получал последовательно информацию из веерообразно расходящихся «лучей». Если полученные яркости отобразить на экране монитора, можно было получить двухмерное изображение тканей пациента, находящихся в одной плоскости. Данный метод исследования стали называть 2D-УЗИ, но более традиционно такую визуализацию называют «B-режим» (B-scan ultrasonography). Пример изображения внутреннего органа (левой почки) в В-режиме показан ниже. Если провести вертикальную линию по оси симметрии этого рисунка и построить график, то в результате получится линия, показанная на предыдущем рисунке (А-режим).

УЗИ левой почки
Николай Кульберг
Через некоторое время конструкция датчиков для двухмерного УЗИ была значительно усовершенствована. Вместо вращающейся головки научились применять так называемые фазированные датчики: поверхность такого датчика состоит из нескольких десятков или сотен элементов, каждый из которых излучает и принимает ультразвук отдельно от других. Здесь для изменения направления луча двигать ничего не надо — все управление осуществляется с помощью подачи электрических импульсов на разные элементы датчика с разными задержками. Сигналы, принятые разными элементами, также обрабатываются отдельно друг от друга. Благодаря этому получаются очень качественные B-изображения.
На этом принципе работает большинство современных ультразвуковых приборов. Основные типы датчиков: линейный, конвексный, секторный — представляют собой различные варианты фазированных решеток.
Тайна третьего измерения
Но если можно, пользуясь фазированным датчиком, отклонять луч в пределах одной плоскости, почему бы не сделать то же самое для перпендикулярной плоскости? Это и будет означать переход к третьему измерению. Этот переход произошел на рубеже 1990-х и 2000-х годов. Но здесь разработчики приборов УЗИ столкнулись со значительными техническими трудностями.
Представим, что для сканирования в одной плоскости требуется разделить датчик на 100 элементов. Сколько элементов понадобится для сканирования по еще одному измерению? Оказывается, 1002, то есть десять тысяч. К каждому такому элементу нужно подвести отдельный провод. Получится кабель такой толщины, что врач просто не сможет удержать его в руке.
Оценив эту трудность, разработчики на первых порах отказались от внедрения в практику двухмерных фазированных датчиков и пошли по хорошо известному пути механического сканирования. Снова в составе «флагманских» моделей приборов появились шарниры и шаговые двигатели, на которых вращался уже сложный фазированный датчик. Сканирование в одной плоскости было электронным, в другой — механическим. Такие датчики до сих пор можно встретить, они продаются в том числе и с новыми приборами.
Когда первый трехмерный датчик стал реальностью, обнаружилась еще одна трудность, связанная со временем получения одного объемного изображения. Скорость звука в теле человека примерно 1,5х105 см/с. Чтобы получить данные с глубины 15 см, приходится ждать 0,0002 секунды. На первый взгляд, это совсем немного. Тем не менее, когда мы переходим к двухмерному сканированию, нужно сделать порядка сотни таких одномерных сканов. Таким образом, один кадр B-изображения можно получить за две сотых секунды, то есть частота кадров будет не более пятидесяти кадров в секунду. А чтобы получить сотню B-сканов, нужных для построения объема, придется ждать уже две секунды. Повышение скорости сканирования стало предметом напряженных изысканий разработчиков во всем мире. Так, пользуясь электронным сканированием только по одной координате удалось повысить скорость сканирования примерно в десять раз за счет так называемого многолучевого сканирования, получаемая при этом частота составляла 5 объемов в секунду. Это было уже полноценное 3D-УЗИ, ведь, пользуясь этим способом, можно получать реалистичные трехмерные изображения. На рисунке ниже показан пример трехмерной реконструкции плода.

Пример трехмерной реконструкции плода
ginekology-md.ru
Спасти ситуацию помогли двухмерные фазированные датчики. Чтобы уменьшить число проводов в кабеле датчика, внутрь самого датчика поместили целый высокопроизводительный компьютер, который «сжимает» полученные данные и пересылает их в закодированном виде по относительно тонкому кабелю. Благодаря этому удается получать частоту несколько десятков «объемов» в секунду. А этого уже достаточно, например, для полноценной визуализации сердца в реальном времени. Поскольку к трем пространственным измерениям добавляется полноценное четвертое, время, эти технологии получили название 4D-УЗИ. С их помощью можно строить полноценное изображение клапанов сердца в режиме реального времени. Его примери приведен ниже.
А что на практике?
Сегодня процедура ультразвукового исследования, в том числе в формате 3D и 4D, проводится достаточно быстро и эффективно: внутренние органы можно увидеть с разрешением менее миллиметра. «Разрешение УЗИ системы зависит от рабочей частоты датчика и глубины, на которой находится исследуемый орган, — рассказывает Николай Кульберг. — Для абдоминальных исследований на частоте 3,5 МГц разрешение на средней глубине десять сантиметров составляет примерно три миллиметра. Для щитовидной железы датчик частотой 7,5 МГц может дать разрешение порядка полумиллиметра на глубине три сантиметра. Кардиодатчик на частоте 3 МГц и на глубине десять сантиметров покажет разрешение пять миллиметров». Что касается скорости получения изображений, то современные УЗИ-аппараты позволяют делать это за считанные минуты.

«На современных УЗ-аппаратах Philips c технологией xMATRIX получить 3D/4D изображение можно за 2-4 секунды, на приборах с механическими датчиками — за 10-14 секунд. Поиск удобной области сканирования, обработка полученных результатов и экспорт изображений занимают дополнительное время, таким образом, исследование может длиться до 20-30 минут», — рассказала Евгения Добрякова, старший специалист подразделения Philips «Ультразвуковые системы».
Куда дальше?
Впрочем, несмотря на все успехи в развитии УЗИ-аппаратов, предел совершенства их работы еще не достигнут. «О путях улучшения двумя словами сказать не получится, потому что это предмет очень сложных научных изысканий в разных областях — от физики и электроники до цифровой обработки сигналов. Здесь постоянно трудятся тысячи исследователей, и каждый год им удается показать какие-то заметные улучшения», — рассказывает Николай Кульберг. Кроме того, разработчики продолжают совершенствовать и аппараты для двухмерного УЗИ, так как далеко не всем врачам нужна объемная картинка.
Помимо совершенствования УЗИ, перед учеными стоят и иные задачи. «Сейчас на повестке дня исследователей во всем мире стоит вопрос создания так называемой УЗ-томографии (УЗТ) по аналогии с хорошо известной компьютерной томографией (КТ) на основе рентгеновского сканирования образца по отдельным слоям, — рассказывает Владимир Кукулин, доктор физико-математических наук, ведущий научный сотрудник отдела физики атомного ядра и главный научный сотрудник лаборатории теории атомного ядра НИИЯФ МГУ. — Создание УЗТ было бы поистине революционным шагом в медицине, сейсмологии и в других сферах, так как позволило бы заменить во многих случаях нежелательное рентгеновское облучение тела, причем многократное, на простое и совершенно безвредное УЗ-сканирование. Однако развитие УЗТ требует очень большого объема вычислений, которые нужно произвести за относительно небольшое время медицинского обследования пациента. Сделать это можно, только применив принципиально новую технологию вычислений на основе сверхбыстрого графического процессора. Эти работы сейчас только разворачиваются.
Второе чрезвычайно интересное новое направление — технология уничтожения опухолей и разрезания внутренних тканей тела с помощью направленного ультразвука. Это направление сейчас формируется под названием хирургии XXI века».
Авторы: Алексей Паевский, Яна Хлюстова
Следить за обновлениями нашего блога можно и через его страничку в фейсбуке и паблик
вконтакте

История развития ультразвуковой диагностики

Современным пациентам сложно представить, что ещё не так давно медики обходились без такого метода диагностики, как ультразвуковое исследование. Ультразвук произвёл настоящую революцию в медицине, наделив врачей высокоинформативным и безопасным способом обследования пациентов.

Всего за каких-то полвека, которые насчитывает история ультразвуковой медицины, УЗИ стало главным помощником в диагностике большинства заболеваний. Как же появился и развивался этот метод?

Первые исследования ультразвуковых волн

О наличии в природе звуковых волн, не воспринимаемых человеком, люди догадывались давно, но открыл «невидимые лучи» итальянец Л. Спалланцани в 1794 г., доказав, что летучая мышь с заткнутыми ушами перестаёт ориентироваться в пространстве.

Первые научные опыты с ультразвуком стали проводиться еще в XIX в. Швейцарскому учёному Д. Колладену в 1822 г. удалось вычислить скорость звука в воде, погружая в Женевское озеро подводный колокол, и это событие предопределило рождение гидроакустики.

В 1880 году братья Кюри обнаружили пьезоэлектрический эффект, возникающий в кварцевом кристалле при механическом воздействии, а спустя 2 года был сгенерирован и обратный пьезоэффект. Это открытие легло в основу создания из пьезоэлементов преобразователя ультразвука – главного компонента любого УЗ-оборудования.

XX век: гидроакустика и металлодетекция

Начало XX века ознаменовалось развитием гидролокации – обнаружения объектов под водой при помощи эха. Созданием первых эхолотов мы обязаны сразу нескольким учёным из разных стран: австрийцу Э. Бэму, англичанину Л. Ричардсону, американцу Р. Фессендену. Благодаря гидролокаторам, сканировавшим морские глубины, стало возможным находить подводные препятствия, затонувшие корабли, а в годы I мировой войны – вражеские субмарины.

Еще одним ультразвуковым направлением стало создание в начале 30-х годов дефектоскопов для поиска изъянов в металлических конструкциях. Своё место УЗ-металлодетекция нашла в промышленности. Одним из основателей данного метода стал российский учёный С.Я. Соколов.

Методы эхолокации и металлодетекции заложили фундамент для первых экспериментов с живыми организмами, которые и проводились приборами промышленного назначения.

Ультразвук: шаг в медицину

Попытки поставить ультразвук на службу медицине относятся к 30-м годам XX века. Его свойства начали применять в физиотерапии артритов, экземы и ряда других заболеваний.

Опыты, начавшиеся в 40-е годы, были направлены уже на использование УЗ-волн в качестве инструмента диагностики новообразований. Успехов в исследованиях достиг венский психоневролог К. Дюссик, который в 1947 году представил метод, названный гиперсонографией. Доктору Дюссику удалось обнаружить опухоль мозга, замеряя интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента. Именно этот учёный считается одним из родоначальников современной УЗ-диагностики.

Настоящий прорыв в развитии УЗД произошел в 1949 году, когда учёный из США Д. Хаури сконструировал первый аппарат для медицинского сканирования. Это и последующие творения Хаури мало напоминали современные приборы. Они представляли собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости – сомаскоп.

Примерно в это же время американский хирург Дж. Уайлд создал портативный прибор с подвижным сканером, который выдавал в режиме реального времени визуальное изображение новообразований. Свой метод он назвал эхографией.

В последующие годы УЗИ-сканеры совершенствовались, и к середине 60-х годов они стали приобретать вид, близкий к современному оборудованию с мануальными датчиками. Тогда же западные врачи начали получать лицензии для использования в практике метода УЗД.

УЗД в советской медицине

Эксперименты по применению ультразвука проводились и советскими учеными. В 1954 году в институте акустики Академии Наук СССР появилось специализированное отделение, возглавляемое профессором Л. Розенбергом.

Выпуск отечественных УЗИ-сканеров был налажен в 60-е годы в НИИ инструментов и оборудования. Учёные создали ряд моделей, предназначенных для применения в различных медицинских сферах: кардиологии, неврологии, офтальмологии. Но все они так и остались в статусе экспериментальных и не получили «места под солнцем» в практической медицине.

К тому моменту, когда советские врачи начали проявлять интерес к ультразвуковой диагностике, им уже приходилось пользоваться плодами достижений западной науки, поскольку к 90-м годам прошлого века отечественные разработки безнадёжно устарели и отстали от времени.

Современные технологии в УЗИ

Методы ультразвуковой диагностики продолжают активно развиваться. На смену обычной двухмерной визуализации приходят новые технологии, позволяющие получать объёмную картинку, «путешествовать» внутри полостей тела, воссоздавать внешний вид плода. Например:

  1. Трёхмерное УЗИ – создаёт 3D изображение в любом ракурсе.
  2. Эхоконтрастирование – УЗИ с применением внутривенного контраста, содержащего микроскопические газовые пузырьки. Отличается повышенной точностью диагностики.
  3. Тканевая, или 2-я гармоника (THI) – технология с улучшенным качеством и контрастностью изображения, показана пациентам с избыточным весом.
  4. Соноэластография – УЗИ с применением дополнительного фактора – давления, помогающего по характеру сокращения тканей определять патологические изменения.
  5. Ультразвуковая томография – методика, аналогичная по информативности КТ и МРТ, но при этом совершенно безвредная. Собирает объёмную информацию с последующей компьютерной обработкой изображения в трёх плоскостях.
  6. 4 D– узи – технология с возможностью навигации внутри сосудов и протоков, так называемый «взгляд изнутри». По качеству изображения похоже на эндоскопическое исследование.