Т система иммунитета

Содержание

Иммунитет и здоровье человека

Иммунитет (от лат. immunitas — освобождение, избавле­ние от чего-либо) — невосприимчивость организма к инфекцион­ным и неинфекционным агентам и веществам, обладающим антигенными свойствами.
Антиген — микроб или белок, попавший в организм человека и имеющий чужеродную генетическую структуру.
Таким образом, иммунная система человека защищает организм от всего генетически чужеродного:
1. паразитов или живых организмов, внедряющихся в тело че­ловека — вирусов, бактерий, простейших, глистов;
2. опухолевых (раковых) клеток;
3. чужеродных органов и тканей, взятых у доноров и пересажи­ваемых в организм.
Существуют разные виды иммунитета, но основная его классификация такова, что он делится на:

  • естественный — врожденную (фагоцитоз, защитные свойства кожи, слизистых оболочек и др.) или приобретенную (после перенесенного заболевания) способность организма человека противостоять какой-либо инфекции (всем известно, что та­кими «детскими» болезнями, как ветрянка или краснуха бо­леют один раз в жизни);
  • искусственный — тот, что приобретается организмом благо­даря вакцинам — активный иммунитет (формируется после прививок) и сывороткам — пассивный иммунитет (создается в организме человека, когда уже он инфицирован, путем введе­ния готовых интерферонов, антител и др.).

Профилактические прививки или иммунизация проводят­ся с целью выработать в организме человека невосприимчивость к самым опасным инфекционным болезням, то есть укрепить им­мунитет искусственным путем. Они осуществляются в строгом соответствии с принятым в России Приказом Минздравсоцразвития от 17.01.2006 г. №27, являются обязательными и бесплатны­ми для всего населения (табл. 8).
Таблица 8 — Национальный календарь профилактиче­ских прививок

Возраст Наименование прививки
Новорожденные пер­вых 12-и часов жизни Первая вакцинация против вирусного гепати­та В
Новорожденные 3-х — 7-и дней Вакцинация против туберкулеза
1 месяц Вторая вакцинация против вирусного гепатита В
3 месяца Первая вакцинация против дифтерии, коклюша, столбняка, полиомиелита
4,5 месяца Вторая вакцинация против дифтерии, коклюша, столбняка, полиомиелита
6 месяцев Третья вакцинация против дифтерии, коклюша, столбняка, полиомиелита
Третья вакцинация против вирусного гепатита В
12 месяцев Вакцинация против кори, краснухи, эпидеми­ческого паротита
18 месяцев Первая ревакцинация против дифтерии, коклюша, столбняка, полиомиелита
20 месяцев Вторая ревакцинация против полиомиелита
6 лет Ревакцинация против кори, краснухи, эпидемического паротита
7 лет Ревакцинация против туберкулеза
Вторая ревакцинация против дифтерии, столбняка
13 лет Вакцинация против краснухи (девочки)
Вакцинация против вирусного гепатита В (ранее не привитые)
14 лет Третья ревакцинация против дифтерии, столбняка
Ревакцинация против туберкулеза
Третья ревакцинация против полиомиелита
Врослые Ревакцинация против дифтерии, столбняка — каждые 10 лет от момента последней ревакцинации

После введения в организм вакцины (от лат. vaccinus — коровий) — препарата, получаемого из живых или убитых микро­бов, иммунная система человека начинает распознавать введен­ный чужеродный агент, вырабатывать специфические антитела для его уничтожения и этот процесс длится в среднем 2 месяца.
Антитело — белок, образующийся в организме человека в ответ на попадание в него антигенов, который при присоедине­нии к ним блокирует или уничтожает чужеродный агент.
Очень важно, чтобы дети обязательно получали все необ­ходимые прививки, так как все инфекции, против которых они направлены, могут привести к тяжелому заболеванию (столбняк, туберкулез), инвалидности и мучительной смерти (гепатит В, по­лиомиелит), рождению детей-уродов (краснуха), бесплодию у мужчин (паротит) и даже к смертельным исходам (дифтерия, коклюш у детей до года).
В 80-е гг. прошлого века в СССР наблюдалось полное эпидемическое благополучие по такому заболеванию, как дифте­рия. В течение многих лет ни один гражданин страны не болел им. Но в период перестройки и демократизации во многих СМИ появились статьи о вреде прививки АКДС (анатоксин коклюшно-дифтерийно-столбнячный), и многие родители стали отказывать­ся прививать своих детей. Это привело к тому, что в 90-е гг. произошла страшная вспышка дифтерии с многочисленными смер­тельными исходами, так как образовалась целая прослойка не привитых людей, а микробы, как известно, никогда не дремлют.
Если уж наше государство, которое финансирует здраво­охранение по остаточному принципу, выделяет средства на при­вивки, бесплатные флюорографические осмотры и т. д., этим ни­когда нельзя пренебрегать. Это крайние меры, отказ от которых ведет к смерти.
Инфекционные болезни вызываются микробами: вируса­ми и бактериями. Вирусы — самые мельчайшие из известных ученым живых существ на планете Земля. Некоторые исследова­тели даже не считают их живыми, так как у них нет ни клетки, ни ядра — один только генетический аппарат, и поэтому они не могут жить самостоятельно, а могут только паразитировать в других живых организмах. Вирусы вызывают такие болезни, как гепати­ты, полиомиелит, эпидемический паротит, краснуху, ветряную оспу, корь, грипп, СПИД и др.
Бактерии имеют клетку и ядерное вещество, хотя оно не сформировано еще в ядро. Открыл бактерии Антони ван Левенгук — голландский натуралист в 1676 г. Они вызывают такие бо­лезни, как туберкулез, дифтерия, коклюш, столбняк, ангина, хо­лера, чума, сибирская язва, сифилис и др.
Существуют меры профилактики заражения инфекцион­ными заболеваниями, в зависимости от путей передачи инфек­ции:

  • при воздушно-капельных инфекциях — ношение ватно-марлевых повязок при контакте с больными, проветривание помещений;
  • при пищевых инфекциях — использование чистой посуды, те­пловая обработка пищи;
  • при контактных инфекциях — избегание соприкосновений с телом больного человека, использования его одежды, средств личной гигиены;
  • при инфекциях, передающихся половым путем — целомуд­ренное поведение и использование презерватива;
  • при любых инфекционных заболеваниях — соблюдение всех гигиенических правил и норм и т.д.

Против бактериальных инфекций применяются антибио­тики (Ампициллин, Пенициллин, Тетрациклин и др.), а против вирусных инфекций — противовирусные препараты (Йодантипирин, Арбидол и др.). Следует помнить, что антибиотики совершенно не влияют на вирусы, а противовирусные препараты не могут убивать бактерии. Все лекарства являются сильнодействующими веществами и разобраться с назначениями может толь­ко врач.
На иммунитет оказывает большое влияние состояние микрофлоры кишечника. В толстом кишечнике человека нахо­дятся миллиарды бактерий — кишечных палочек, бифидобактерий и др. Они способствуют перевариванию остатков пищи, выработ­ке витаминов группы В и т.д.
При изменении их количества, со­отношения между собой развивается дисбактериоз кишечника, что провоцирует развитие многих заболеваний и неудовлетворительное состояние организма. Чаще всего к дисбактериозу при­водят кишечные инфекции и назначение антибиотиков, поэтому после их приема необходимо пройти курс лечения препаратами, содержащими нормальную микрофлору кишечника — пробиотиками, такими как бифидумбактерин, бификол, лактобактерин и др. При этом необходимо помнить, что эффект может наступить только при курсе лечения не менее 2-х месяцев.
На кафедре технологии молочных продуктов Восточно-Сибирского государственного технологического университета (ВСГТУ) вы­пускается пробиотик «Бифидум концентрат жидкий», который по данным специалистов Роспотребнадзора превосходит по эф­фективности аналогичные препараты (указанные выше). Его можно приобрести по адресу: Ключевская 40 а, 8 корпус ВСГТУ, 1 этаж, кафедра технологии молочных продуктов.
В такой отрасли современной медицины, как трансплан­тология (от лат. transplantation — пересадка органов), иммунная система играет отрицательную роль, так как вызывает реакцию отторжения донорской ткани. Чтобы избежать этого, перед опе­рацией по пересадке органов и тканей у реципиента полностью подавляют иммунную систему.
Необходимо помнить, что иммунная система человека страдает от каждого нового случая заболевания, поэтому профи­лактика инфекционных болезней, аллергических обострений и закаливание являются самыми лучшими способами укрепления иммунитета.
Для тех, кто страдает частыми ангинами, у кого постоян­но болит горло, существует способ укрепления местного иммунитета — окологлоточного лимфоидного, кольца с помощью ежедневного (3 раза в день) полоскания горла свежим отваром цветков календулы лекарственной (ноготков).
Для этого в аптеке не обходимо приобрести спиртовую настойку ноготков или сухое сырье для домашнего приготовления настоев и отваров, в том числе спрессованное в брикеты.
Для полоскания 1 чайную ложку настойки разводят на 1 стакан воды или готовят настой или отвар из 1 брикета на 1 стакан воды. Если приобретено сырье, то настой цветков ноготков готовят таким способом: 20 г. (2 столовые ложки) сырья помещают в эмалированную посуду, заливают 200 мл стаканом) горячей кипяченой воды, закрывают крышкой и на­гревают на водяной бане 15 минут.
Охлаждают при комнатной температуре в течение 45 минут, процеживают. Оставшееся сырье отжимают, в настой добавляют кипяченую воду доводя его объем до первоначального — 200 мл.
Настой хранят в прохладном месте не более 2 суток. Отвар готовят так же, как и настой, но выдерживают смесь на водяной бане в течение 30 минут, а охлаждают при комнатной температуре 10 минут.
Шурыгина Ю.Ю.

Опубликовал Константин Моканов

Т-клетки — марионетки, или как перепрограммировать Т-лимфоциты, чтобы вылечить рак

Статья на конкурс «био/мол/текст»: Ученые объединили методы иммунотерапии, цитотерапии и генотерапии для перепрограммирования Т-лимфоцитов в потенциальных «убийц» раковых клеток. Но и этого оказалось недостаточно — следующим шагом стало создание молекулярного «выключателя», с помощью которого можно регулировать время и силу действия активированных Т-клеток. Инновационный метод закладывает основу для резкого сокращения серьезных (а иногда и смертельных) побочных эффектов, вызванных терапией с использованием модифицированных Т-клеток.

Медицина перешла на новый уровень: клетки стали живым лекарством

В последнее время в терапии опухолевых заболеваний особое внимание уделяется адоптивной иммуноцитотерапии (от англ. adoptive — приемный). При этом часть клеток иммунной системы пациента искусственно «натравливают» на опухолевые клетки. Суть метода состоит в том, чтобы отобрать у пациента необходимые иммунные клетки, обработать их — например, иммунными цитокинами (небольшими белками, выполняющими функции регуляторов деления и дифференцировки специфических иммунных клеток), — а затем вернуть в организм уже активированные клетки, которые и будут помогать бороться с опухолями* (рис. 1).

* — Эта тема является одной из самых горячих направлений клинической иммунологии — см. статью «Хороший, плохой, злой, или Как разозлить лимфоциты и уничтожить опухоль» . — Ред.

Рисунок 1. Схема получения антиопухолевых Т-клеток для адоптивной иммуноцитотерапии. Рисунок из .

Впервые метод адоптивной иммуноцитотерапии был описан еще в 1988 году — у пациентов с метастатической меланомой (то есть раком кожи на четвертой стадии) наблюдалась регрессия заболевания при терапии с помощью их TIL-клеток (лимфоцитов, инфильтрующих опухоль) . В настоящее время терапия метастатической меланомы на основе TIL-клеток является наиболее эффективным способом лечения данного заболевания, поскольку регрессия опухоли наблюдается у половины пациентов .

Существует несколько вариантов клеток, которые используются в адоптивной иммунотерапии; из них три используются при терапии опухолевых заболеваний: уже знакомые нам TIL-клетки (лимфоциты, инфильтрующие опухоль), LAC-клетки (лимфокин-активированные киллеры) и CIK-клетки (цитокин-индуцированные киллеры). На самом деле собственные Т-клетки организма тоже стараются бороться с опухолевыми клетками, только зачастую опухолевые клетки им «не по зубам». Не то, чтобы совсем — ведь существует иммунный надзор, осуществляемый Т-клетками и естественными киллерами (NK-клетками), с помощью которых иммунная система старается защититься от опухолей, — однако это вовсе не стопроцентная защита. Однако случается, что иммунный надзор не всегда достаточно силен, чтоб предотвратить развитие опухолей: так, при длительном применении иммунодепрессантов после трансплантаций органов повышается частота развития многих опухолей .

Необходима система наведения

Несмотря на сложность получения модифицированных клеток, а также сопутствующий риск возникновения серьезных побочных эффектов, все же главной проблемой метода иммуноцитотерапии является отсутствие способов прицельной доставки вводимых модифицированных иммунных клеток в опухоль. Раковые клетки часто делаются практически «невидимыми» для иммунной системы, и они образуют микросреду, которая подавляет активность и миграцию Т-клеток . Для того, чтобы сбросить мантию-невидимку с опухолевых клеток, Т-лимфоциты надо не только активировать, но и придать им способность прицельно узнавать опухолевые клетки. Т-клетки могут быть перепрограммированы методами генной инженерии путем введения генов, кодирующих рецепторы к опухолевым антигенам (TAA, tumour-associated аntigens) — оснащения собственной «системой наведения». Также можно заодно ввести гены для придания Т-клеткам устойчивости к иммуносупрессии для увеличения выживаемости или облегчения проникновения сконструированных Т-клеток в опухоль. В итоге, могут быть получены высокоактивные «наемные убийцы» раковых клеток .

Для получения эффективных «убийц» Т-лимфоциты модифицируют путем оснащения их искусственными химерными антигенными рецепторами (CAR, chimeric antigen receptors). Рецепторы химерные, поскольку одна часть (распознающая) была «позаимствована» у моноклональных антител, а часть, передающая сигнал, — у Т-клеточного рецептора (ТCR). В качестве внеклеточной «распознающей» части обычно служат вариабельные домены тяжелой и легкой цепи иммуноглобулинов необходимой специфичности (scFv), которые образуют специфичный к опухолевым клеткам антиген-связывающий участок (рис. 2).

Рисунок 2. Структура химерного антигенного рецептора (CAR). CAR состоит из внеклеточного домена (одноцепочечного вариабельного фрагмента антитела (scFv)), соединенного с помощью цепей и трансмембранных доменов с цитоплазматической сигнальной областью. Гены, кодирующие scFv, получены из В-клеток, продуцирующих антитела, специфичные к опухолевому антигену. CAR существует в виде димера, и распознавание опухоли происходит напрямую (без участия MHC). Рисунок из .

Все новое — это хорошо забытое старое. Первые Т-клетки с химерным антигенным рецептором были получены командой ученых под руководством профессора Эсхара (Zelig Eshhar); результаты работы были опубликованы еще в 1989 году . Эсхар понял, что, обладая данной техникой, Т-клетки можно запрограммировать на нацеленную атаку.

Однако с момента обнаружения химерных антигенных рецепторов до внедрения технологии в практику прошло больше 20 лет. За это время были улучшены химерные антигенные рецепторы — были созданы CAR 2-го поколения, в которые был внесен дополнительный сигнальный домен костимулирующей молекулы, который позволил улучшить активацию Т-клеток и их распространение. В CAR 3-го поколения был добавлен еще один сигнальный домен, что в конечном итоге повысило уровни выживания и размножения модифицированных Т-клеток (рис. 3). В конечном итоге были улучшены способность к «выслеживанию» опухолевых клеток, а также уменьшены побочные эффекты.

Рисунок 3. Эволюция химерных антигенных рецепторов. Рисунок с сайта www.the-scientist.com.

Рисунок 4. Бутылка с питательной средой для Т-клеток, которые после введения в них нового рецептора выращивают около 10 дней до достижения ими количества в несколько миллиардов. Тогда они могут быть введены в вены пациента. Рисунок из .

Первые клинические испытания генетически модифицированных Т-лимфоцитов, несущих химерные антигенные рецепторы, прошли в 2012 году. Они выпали на долю девочки по имени Эмили, больной острой лимфобластной лейкемией. После того, как генетически модифицированные Т-клетки были обратно введены девочке, ее состояние резко ухудшилось, и она провела несколько недель в отделении интенсивной терапии на искусственной вентиляции легких. В какой-то момент жизнь Эмили висела на волоске, но в итоге девочка поправилась, и уже три года в ее организме врачи не находят даже единичных раковых клеток .

Побочные эффекты новой терапии

Несмотря на то, что иммуноцитотерапия Т-клетками с CAR является прорывом в области лечения опухолевых заболеваний, есть еще ряд опасностей, которые могут поджидать за углом. Доктор Карл Джун (Carl June) из университета Пенсильвании был одним из первых, кто опубликовал успешные результаты лечения модифицированными Т-клетками, сравнил то, что происходит внутри тела пациента с «серийным убийством» и «массовым убийством». Когда миллиарды Т-клеток, которые были введены в организм, поделятся, то они смогут обнаружить и убить несколько фунтов опухоли. Но в этом тоже немало риска — многие пациенты страдают от синдрома высвобождения цитокинов (цитокинового шторма) — при борьбе Т-клетки с опухолевой клеткой высвобождается большое количество молекул цитокинов, что представляет угрозу для самого организма. Так, семь пациентов умерло вследствие этого синдрома .

Побочные эффекты связаны с мощной иммунной активностью модифицированных Т-клеток. Одним из камней преткновения является риск высокой токсичности, не позволяющий ввести подобное лечение на регулярной основе. «Т-клетки — действительно мощные создания», — говорит профессор Венделл Лим (Wendell Lim), заведующий отделом Департамента клеточной и молекулярной фармакологии Калифорнийского университета. — «Будучи активированными, они могут вызвать смерть. Нам необходима система удаленного контроля, которая сохранит силу этих модифицированных Т-клеток, и позволит специфично „общаться“ с ними и управлять Т-клетками, находящимися в организме» .

Т-клетки взяли под контроль

Ученые из Калифорнийского университета в Сан-Франциско создали молекулярный «включатель», с помощью которого можно управлять действиями генноинженерных Т-лимфоцитов. Как и обыкновенные Т-клетки, несущие CAR, новые Т-клетки с «включателем» будут взаимодействовать с опухолевыми клетками, но не будут переходить «в атаку», пока не будет введен специальный препарат. Данный препарат является своеобразным «химическим мостиком» внутри Т-клеток: он запускает иммунные реакции, «включает» их, переводя в активное состояние. Когда препарат перестает циркулировать в крови, Т-клетки снова переходят в «выключенное» состояние (рис. 5).

Рисунок 5. Титруемый контроль генноинженерных Т-клеток с помощью включаемого химерного антигенного рецептора. С обычным CAR Т-клетки активируются при соединении с клеткой-мишенью, при этом из-за очень сильного иммунного ответа есть риск высокой токсичности. «Включаемый» CAR требует небольшую стимулирующую молекулу для запуска терапевтической функции. Величину ответа (например, «убийства» клеток-мишеней) можно титровать, тем самым уменьшая токсичность при уменьшении количества небольшой стимулирующей молекулы. Рисунок из .

Внедрение «пульта управления» в Т-клетку с химерным антигенным рецептором — это пример простой и эффективной стратегии совмещения собственных и автономных решений клетки (например, обнаружение сигналов болезни) с контролируемыми пользователем из вне. Перегруппировка и расщепление основных частей CAR обеспечивает возможность «включения» и «выключения» химерных антигенных рецепторов. Данная работа также подчеркивает важность разработки оптимизированных биоинертных «пультов управления», таких как небольшие молекулы и свет, вместе с их клеточными компонентами реагирования, в целях повышения точности контролируемой терапии .

Таким образом, правильно дозируя препарат, можно управлять уровнем иммунной активности модифицированных Т-клеток. В частности, благодаря данной технологии можно снизить отрицательные последствия синдрома высвобождения цитокинов. Также иногда нормальные клетки экспрессируют небольшие количества белков, которые являются мишенью для Т-клеток с CAR. Поскольку модифицированные Т-клетки вводят в кровяное русло и они проходят через сердце и легкие, ткани этих органов могут быть повреждены прежде, чем Т-клетки достигнут своих намеченных целей в других частях тела. А с новой технологией Т-клетки будут в «выключенном» состоянии, пока не достигнут цели .

Иммунотерапия с помощью Т-клеток с CAR успешна против рака крови, но, когда дело доходит до твердых опухолей, которые образуются в толстой кишке, молочных железах, мозге и других тканях, модифицированные Т-клетки до сих пор не показывают высокой эффективности. Возможно, метод дистанционного управления Т-клетками позволит разработать более мощные версии химерных антигенных рецепторов, которые позволят Т-клеткам поражать твердые опухоли, при этом не обладая серьезными побочными эффектами.

Литература

Естественные (натуральные) киллеры, или NK-клетки представляют собой тип токсических лимфоцитов, которые являются критически важными для иммунитета. NK-клетки образуются в костном мозге, в лимфатических узлах, селезенке, миндалинах, вилочковой железе. Они влияют на несколько видов злокачественных опухолей и микробных инфекций, ограничивая их распространение и повреждение ими тканей организма.

Эти клетки становятся активными спустя примерно 3 дня после поступления инфекции в организм и сразу реагируют на раковые клетки в организме. Можно сказать, что NK-клетки постоянно ищут опухолевые клетки и непосредственно воздействуют на них, вызывая гибель.

Известно, что, если организм не сможет вырабатывать NK-клетки, то под воздействием бактерий и вирусов может достаточно быстро умереть. Был выявлен дефицит натуральных киллеров у людей в начальной стадии герпес-вирусной инфекции. При достаточной активности и здоровом количестве этих клеток, они способны помогать в борьбе с ВИЧ. Есть и прямая зависимость, показанная в опытах на мышах, между снижением количества Nk-клеток и развитием рака.

Повышение иммунитета через активацию натуральных киллеров

В основное время циркулирующие NK-клетки остаются в фазе покоя. Но если NK-клетки были активированы цитокинами, то это приводит к инвазии этих клеток в ткани тела, пораженные вирусами или бактериями. Когда натуральные киллеры активируются, то начинают вырабатывать интерфероны и фактор некроза опухоли ФНО-а. При приближении к клетке-мищени, натуральные киллеры выпускают белок перфорин, который вызывает поражение мембраны вредных клеток или микроорганизмов. Белок перфорин, как бы «прожигает кожу» вредной клетки. Подобная реакция натуральных клеток на различные возбудители заболеваний показывает, что активация NK-клеток может быть одним из условий повышения силы иммунитета.

УВЕЛИЧЕНИЕ КОЛИЧЕСТВА И АКТИВНОСТИ НАТУРАЛЬНЫХ КИЛЛЕРОВ ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ (http://www.cell.com/trends/molecular-medicine/fulltext/S1471-4914(16)30041-7)

Когда повышается уровень NK-клеток – усиливается иммунитет

Не всегда повышенное количество и активность натуральных киллеров может быть полезна. Например, ожирение повышает экспрессию воспалительных генов в брюшном жире (но не в других частях тела). Это увеличивает количество и активность NK-клеток в жировой прослойке живота. Но, когда натуральные киллеры уменьшают своё количество, то воспаление в брюшном жире снижается и улучшается резистентность к инсулину. Дело в том, что NK-клетки управляют инсулинорезистентностью через выработку некоторых белков, которые затем воздействуют на макрофаги.

ЧТО СТИМУЛИРУЕТ АКТИВАЦИЮ ИММУННОГО ОТВЕТА ПО TH1 И TH2 ТИПУ

При астме NK-клетки способствуют усиления иммунного ответа через выработку IgE, что может ухудшить состояние больного с астмой. А при диабете 1-го типа натуральные киллеры усиливают разрушение поджелудочной железы, что еще больше усиливает проявления диабета. Известно, что при увеличенной активности NK-клеток у женщин могут быть повторные выкидыши.

Существует два типа доминирования иммунного ответа – Th1 и Th2. Считается, что доминирование по Th1 типу является воспалительным ответом организма и такая реакция иимунитета стимулирует выработку цитокинов IL-12, IL-2 и увеличивает активность NK-клеток. Но существует обратная реакция, когда активированные NK-клетки подавляют клетки Th1 иммунного ответа.

ПРИ ДИСБАЛАНСЕ ИММУННОГО ОТВЕТА (TH1/TH2) ПОВЫШАЕТСЯ РИСК РАЗЛИЧНЫХ ЗАБОЛЕВАНИЙ

В целом, можно сказать, что повышение иммунитета не должно быть слишком сильным, особенно, если касаться натуральных киллеров. Хотя, при некоторых заболеваниях, например, таких, как рак, усиление иммунного ответа через активацию и увеличение числа NK-клеток может быть одним из способов лечения.

Когда количество NK-клеток понижается

  • Рак. При этом заболевании NK-клетки показывают низкую активность по подавлению раковых клеток.
  • Вирусные инфекции (низкая численность и активность)
  • Рассеянный склероз (низкая активность)
  • Ревматоидный артрит (низкое число и активность)
  • Системная красная волчанка (низкая численность и активность)
  • Синдром хронической усталости (низкая активность)
  • Преждевременное старение (низкая численность и активность)

ПОТЕНЦИАЛЬНАЯ РОЛЬ НАТУРАЛЬНЫХ КИЛЛЕРОВ NK-КЛЕТОК В ПРОТИВООПУХОЛЕВОМ ОТВЕТЕ (http://www.nature.com/nrc/journal/v2/n11/fig_tab/nrc928_F2.html)

Как естественно увеличить количество NK-клеток и тем самым повысить иммунитет

Образ жизни

  • Физическая активность
  • Лечебный массаж

Вещества

  • Куркумин
  • Цинк
  • Селен
  • Чеснок
  • Астаксантин
  • Мелатонин
  • Астрагал
  • Спируллина
  • Элеутероккок
  • Корни растения Salvia miltiorrhiza – ингибитор а-глюкозидазы. Замедляет всасывание углеводов. Отлично подходит для здоровья сердца
  • Голубика, черника
  • Эхинацея
  • Пептиды тимуса
  • Гормон дофамин
  • Гормоны щитовидной железы
  • Гормон пролактин
  • Гормон вазоактивный интестинальный пептид

Как естественно увеличить активность NK-клеток и тем самым повысить иммунитет

  • Физическая активность
  • Силовые тренировки
  • Антиоксиданты
  • Лечебный массаж

Вещества

Стоит осторожно относится к этому перечню, если у вас присутствует доминирование ответа иммунитета по Th1 пути.

  • Белый шампиньон
  • Куркумин
  • Ресвератрол
  • Андрографис
  • Ашвагандха
  • Кардамон
  • Пробиотики: S Boulardii, L casei, L bulgaricus
  • Витамин В12
  • Чеснок
  • Пептиды тимуса
  • Астрагал
  • Ягоды годжи
  • Бета-глюканы
  • Гриб Рейши
  • Гиностемма
  • Женьшень
  • Растение львиная грива
  • Эхинацея
  • Хлорелла
  • Коэнзим Q10
  • Витамин Е
  • Низкие дозы Налтрексона
  • Арабиногалактан
  • Cocoacalm
  • Гормон роста
  • IGF-1
  • Гормон щитовидной железы Т3
  • Гормон пролактин

ПОТЕНЦИАЛЬНЫЙ ВРЕД, НАНОСИМЫЙ ЛЕКТИНАМИ (https://livingwellnessblog.wordpress.com/2014/04/27/the-lectin-fodmap-diet-connection/)

Что может уменьшить уровень и активность NK-клеток и понизить иммунитет

  • Лектины, особенно растительного происхождения (хлебная мука) способны инициировать избыток выработки полиаминов, которые могут быть результатом усилий по восстановлению микроворсинок кишечника. Поражение этих ворсинок происходит под воздействием лектинов. Высокий уровень полиаминов способен уменьшить популяцию NK-клеток.
  • Липоевая кислота
  • Кортизол (при длительном стрессе или гиперкортицизме)
  • Фолиевая кислота (только, если синтетическая форма)
  • Гормон соматостатин

Уменьшение активности и цитотоксичности NK-клеток может привести к ухудшению способности организма защищаться от инфекций и раковых клеток. К веществам, уменьшающим цитотоксичность натуральных киллеров, относятся:

  • Ацетилхолин
  • Эстрадиол
  • Опиоиды
  • Фолиевая кислота (у женщин в постменопаузе)
  • Рыбий жир
  • Тестостерон + интенсивные силовые нагрузки

Источники информации

Информация на этом сайте не была оценена какой либо медицинской организацией. Мы не стремимся диагностировать и лечить любые болезни. Информация на сайте предоставляется только в образовательных целях. Вы должны проконсультироваться с врачом, прежде чем действовать исходя из полученной информации из этого сайта, особенно, если вы беременны, кормящая мать, принимаете лекарства, или имеете любое заболевание. Среднее 5 Всего голосов (1)

Т-лимфоциты: путешественники и домоседы

Статья на конкурс «био/мол/текст»: Клетки иммунной системы путешествуют по лимфе и кровотоку в поисках антигена, который можно распознать и начать защитную иммунную реакцию. Но значительная часть Т-лимфоцитов находится не в крови и не в лимфоузлах, а в органах, не относящихся к иммунной системе. Эта статья рассказывает, чем заняты резидентные Т-клетки тканей, как они туда попадают и какие преимущества для медицины может дать их изучение.

Адекватная защитная реакция при заражении патогенным вирусом — уничтожить зараженные клетки, не допустив распространения инфекции по организму и гибели большего числа клеток. Зараженная вирусом клетка может заметить в себе вирус и начать аутофагию либо апоптоз — или получить инструкцию для программируемой клеточной гибели от Т-киллера.

Цитотоксический Т-лимфоцит, или Т-киллер — вершина эволюции адаптивного иммунитета, ведь для распознавания фрагмента вируса (антигена) на зараженной клетке он использует Т-клеточный рецептор, случайно и независимо собирающийся на каждой Т-клетке в тимусе. Не имеющий аналогов вне адаптивной иммунной системы позвоночных механизм сборки Т-клеточного рецептора использует преимущества, полученные позвоночными при дупликациях генома в процессе эволюции и протекает с участием особых белков-рекомбиназ, когда-то заимствованных у ДНК-транспозонов (см. подробнее в статье Чудакова «Анализ индивидуальных репертуаров Т-клеточных рецепторов»).

Классическая иммунология человека построена на изучении иммунных клеток крови просто в силу того, что анализ крови можно взять у любого пациента, исследовать в норме и в патологии. Именно на клетках крови была выстроена классификация Т-лимфоцитов: деление на Т-киллеры и Т-хелперы, которые проверяют антигенную специфичность Т-киллеров, выдают им «лицензию на убийство» и способны управлять всем ходом иммунного ответа через сигнальные растворимые молекулы — цитокины. А также более позднее выделение из ветви Т-хелперов группы регуляторных Т-клеток, подавляющих избыточный адаптивный иммунитет.

Но как нам напоминает реклама йогурта, значительная часть клеток иммунной системы сосредоточена вокруг слизистой оболочки пищеварительного тракта и в других тканях. В то время как в 5–6 литрах крови взрослого человека находится около 6–15 миллиардов лимфоцитов, то число Т-клеток, находящихся в эпидермисе и коже, оценивают в 20 млрд , в печени взрослого мужчины — еще 4 млрд . Достаточно ли изучения клеток крови для полного описания функций Т-клеток, если в периферических органах Т-клеток больше, чем в кровотоке? И достаточно ли классических субпопуляций, чтобы описать все типы Т-клеток, находящихся в организме человека?

Жизненный цикл Т-лимфоцита

Каждая Т-клетка после сборки Т-клеточного рецептора проходит тестирование на функциональность случайно собранного рецептора (положительная селекция) и отсутствие специфичности к собственным антигенам организма (отрицательная селекция), то есть на отсутствие очевидной аутоиммунной угрозы. Этапы селекции происходят в вилочковой железе, тимусе; при этом более 90% клеток-предшественников погибает, не сумев правильно собрать рецептор либо пройти селективный отбор. Выжившие Т-клетки пролиферируют и выходят из тимуса в кровоток — это наивные Т-лимфоциты, не встречавшиеся с антигеном. Наивная Т-клетка циркулирует по крови и периодически заходит в лимфоузлы, где в Т-клеточной зоне контактирует со специализированными антигенпрезентирующими клетками.

После встречи с антигеном в лимфоузле Т-клетка приобретает способность снова делиться — становится предшественницей Т-клеток памяти (TSCM, stem cell memory T cells). Cреди клона её потомков появляются клетки центральной памяти (TCM), короткоживущие эффекторные клетки, осуществляющие иммунную реакцию (SLEC или TEMRA-клетки), и эффекторные клетки-предшественники памяти TEM, в свою очередь при делении дающие TEMRA . Все эти клетки выходят из лимфоузла и перемещаются по крови. Эффекторные клетки затем могут выйти из кровотока для осуществления иммунной реакции в периферической ткани органа, где находится патоген. Что потом — снова путешествие по крови и лимфоузлам?

Рисунок 1. Эмиграция эффекторной Т-клетки в ткань при вирусной инфекции. Сигналы воспаления от зараженных эпителиальных клеток при участии резидентных клеток передаются эндотелию сосудов, клетки эндотелия привлекают эффекторные Т-клетки хемокинами CXCL9, CXCL10. Роллинг: при движении по посткапиллярной венуле в ткани эффекторная клетка замедляется, образуя временные контакты между Е-селектинами и P-селектинами на клетках эндотелия. Остановка: эффекторная клетка плотно прикрепляется к эндотелию при взаимодействии LFA-1 и других альфа-интегринов с ICAM-1/VCAM-1/MAdCAM-1 (на эндотелии). Трансмиграция: эффекторная Т-клетка связывает эндотелиальный JAM-1 молекулами PECAM, CD99, LFA-1 и проникает через клетки эндотелия в подслизистую. Рисунок из .

Процесс трансмиграции лейкоцита.

Клетки стромы, то есть основы лимфоузла, выделяют сигнальные вещества для того, чтобы позвать Т-клетку в лимфоузел — хемокины. Распознают хемокины лимфоузлов рецепторы хоуминга CCR7 и CD62L. Но на эффекторных клетках отсутствуют оба этих рецептора. Из-за этого долгое время было загадкой, как эффекторные клетки могут попасть из периферической ткани обратно во вторичные лимфоидные органы — селезенку и лимфоузлы.

В то же время стали накапливаться данные о различиях в репертуарах мембранных маркеров и профилях транскрипции между Т-клетками памяти в крови (TEM) и Т-клетками памяти в других органах, которые никак не укладывались в концепцию постоянной миграции Т-клеток между тканями и кровью. Решено было выделить новую субпопуляцию: резидентные клетки памяти, которые населяют определенный орган и не рециркулируют — TRM-клетки .

Рисунок 2. Схема перехода потомков активированных Т-лимфоцитов между популяциями. Рисунок из .

Происхождение резидентных Т-клеток тканей

Откуда впервые появляются резидентные клетки ткани? Это потомки эффекторных клеток, которые потеряли способность рециркулировать. Некоторые периферические для иммунной системы ткани, например, слизистая тонкого кишечника, брюшная полость, — позволяют эффекторным Т-лимфоцитам проникать внутрь свободно; другие — очень ограниченно, большой поток эффекторных Т-клеток в эти ткани наблюдается только при реакции воспаления. К тканям второго типа относятся отделенные барьером от иммунной системы, к примеру, головной и спинной мозг, а также многие другие: периферические ганглии, слизистые половых органов, легкие, эпидермис, глаза. Разница между двумя типами тканей — в экспрессии дополнительных молекул хоуминга для эффекторных Т-клеток, например, молекулы адгезии для проникновения в эпителий MadCAM-1 .

Рисунок 3. «To home or not to home?» — сложный выбор эффекторной клетки. To home — процесс хоминга, или миграции Т-клеток, например, в наиболее привычное для наивных клеток место — лимфоузел. Альтернатива — не отправляться в путешествие по организму и превратиться в резидентную клетку ткани.

Резидентные Т-клетки в старении тканей человека

Карта соотношений присутствия отдельных субпопуляций Т-клеток в разных органах человека, как ни странно, была составлена только в 2014 году. Команда Донны Фарбер из медицинского центра Колумбийского Университета Нью-Йорка провела сравнение фенотипов Т-клеток, выделенных из крови и тканей доноров органов всех возрастных групп от 3 до 73 лет, всего по 56 донорам . Анализ субпопуляций Т-клеток при помощи проточной цитофлуориметрии подтвердил многие данные, полученные методами с меньшим разрешением и меньшей статистикой, и некоторые черты описания иммунной системы, перенесенные с иммунологии мыши на человека, к примеру, снижение содержания наивных Т-лимфоцитов при старении во всех органах.

Уменьшение числа наивных Т-клеток с возрастом связано с быстрым старением тимуса (вилочковой железы), в котором будущие Т-клетки проходят этапы сборки Т-клеточного рецептора, проверку работоспособности рецептора и селекцию на отсутствие аутоиммунного потенциала. Важно не только снижение абсолютной численности наивных Т-клеток, но и уменьшение разнообразия репертуара Т-клеточных рецепторов, а значит, и возможности сформировать адаптивный иммунный ответ на ранее незнакомую инфекцию . Для наивных Т-киллеров подтвердилось прогрессирующее падение численности в крови и лимфоузлах, хотя для наивных Т-хелперов отрицательная корреляция численности с возрастом в данном исследовании оказалась значительной только во вторичных лимфоидных органах, но не в крови.

Выделение Т-лимфоцитов памяти, эффекторных клеток памяти и короткоживущих эффекторных клеток из слизистых легких, тонкого и толстого кишечника, паховых и мезентериальных лимфоузлов доноров органов позволило впервые оценить динамику данных популяций в тканях человека при старении. Доля центральных клеток памяти ожидаемо растет с течением жизни, в соответствии с ростом числа инфекций, которые успели встретиться организму и попасть в библиотеку памяти иммунной системы. Растет и процент терминально дифференцированных эффекторных Т-киллеров (TEMRA), но только в лимфоузлах и в селезенке; в нелимфоидных тканях численность TEMRA падает. Эффекторные клетки памяти TEM стремительно заполняют нишу для Т-клеток в тканях ребенка, быстро, примерно к 12 годам вытесняя наивные Т-клетки. Короткоживущие терминально дифференцированные Т-киллеры чаще всего встречаются в крови, селезенке и слизистых легких в любом возрасте, а вот среди Т-хелперов эта субпопуляция представлена исчезающе малым числом клеток. Аналогично мало центральных клеток памяти среди Т-киллеров, преимущественно они находятся в слизистых двух барьерных тканей: легких и кишечника.

Широкими мазками карту распределения Т-лимфоцитов человека можно обрисовать так: наивные Т-клетки путешествуют по крови и периодически заходят во вторичные лимфоидные органы, киллеры-TEMRA находятся в крови, селезенке и легких. Для центральных клеток памяти, судя по всему, характерно более индивидуальное распределение по тканям, чем для других субпопуляций: во всяком случае, закономерностей динамики при старении разных тканей выявить не удалось. Эффекторные клетки памяти, включающие в себя и TRM субпопуляцию, доминируют среди Т-клеток слизистых барьерных тканей. В целом, при старении Т-клеточного иммунитета нелимфоидные ткани большую возрастную динамику типов Т-клеток . Стабильность тканевых клеток проще объяснить, если разобраться, какие из эффекторных клеток TEM остаются в ткани, становятся резидентными TRM, и из каких событий состоит их жизнь после отказа от путешествий по организму.

Рисунок 4. Пути циркуляции Т-лимфоцитов различных субпопуляций. Tnaive — наивные Т-клетки, вместе с субпопуляцией TCM перемещаются по крови и заходят в Т-клеточную зону различных лимфоузлов, в капиллярах тканей встречаются, но в ткань не выходят (красная траектория). Эффекторные Т-клетки (голубой цвет) перемещаются по лимфе и кровотоку, при попадании в лимфоузел не заходят в Т-клеточные зоны (центр лимфоузла) — траектория лилового цвета. Резидентные Т-клетки тканей (показаны зеленым в коже и различными цветами в слизистых) перемещаются только внутри ткани — траектория зеленого цвета. Рисунок из , с изменениями.

Как отличить резидентные клетки тканей от примесей клеток крови?

Резидентные Т-клетки корректно, но неудобно каждый раз определять по способности индивидуальной клетки мигрировать в лимфоузлы, поэтому необходимо составить список характерных признаков, по которым можно определить принадлежность к этой субпопуляции. Резидентные Т-лимфоциты в тканях-естественных барьерах организма (например, в легких и слизистой тонкого кишечника) немного похожи на классические эффекторные клетки крови: экспрессируют маркер активированных клеток CD69, причем экспрессия стабильна в течении жизни при взрослении и старении и характерна для всех нелимфоидных тканей. Но вдобавок CD69 колокализуется с маркером CD103, который обозначает группу молекул адгезии — интегринов, способствующих прикреплению резидентной Т-клетки к эпителию и к фибробластам в подслизистой выбранного органа. Для эффекторных Т-клеток во вторичных лимфоидных органах экспрессия CD103-интегринов совершенно нехарактерна: TEM клетки постоянно сохраняют подвижный фенотип.

У карты, составленной коллективом Донны Фарбер, есть крупный недочет: неясно, насколько чисто удается выделить Т-лимфоциты из органа, какую долю анализируемых клеток на самом деле составляют Т-лимфоциты крови из капилляров внутри органа.

Особенно остро вопрос загрязнения клетками крови стоит для легких, не случайно субпопуляционный состав Т-клеток легких неожиданно похож на Т-клетки крови и лимфоузлов. Вопрос загрязнения клетками крови был изящно решен для Т-лимфоцитов мыши: подопытных мышей заражали вирусом лимфоцитарного хориоменингита после пересадки трансгенного клона Т-клеток P14, специфичного к данному вирусу. В результате при инфекции большая часть циркулирующих клеток была представлена вирус-специфичным клоном P14, и его присутствие в тканях можно было отследить иммунофлуоресценцией по P14-специфичному антителу. Перед тем, как мышей убивали, им в кровь вводили антитело к маркеру Т-киллерных клеток анти-CD8, оно быстро распространялось по кровотоку и связывалось со всеми Т-киллерами в крови (но не в тканях). При микроскопии срезов органов легко было отличить резидентные киллерные TRM от только недавно вышедших из крови в орган клеток, помеченных анти-CD8 антителом . Численность резидентных клеток, подсчитанная этим методом, превышала в 70 раз определенные методом проточной цитометрии числа; разница меньше, чем в два раза, наблюдалась только для резидентных клеток лимфоузлов и селезенки: получается, стандартные методики выделения лимфоцитов из органов плохо подходят для анализа киллерных резидентных клеток и существенно занижают размеры популяции.

Работа резидентных Т-клеток: не стоит путать туризм с эмиграцией

Мышиные резидентные клетки тканей в нормальной ситуации почти не перемещаются внутри нелимфоидной ткани и достаточно прочно прикреплены молекулами адгезии к строме органа. Когда резидентные макрофаги той же ткани секрецией цитокинов инициируют реакцию воспаления, ТRM приобретают большую подвижность и патрулируют близлежащий эпителий в поисках зараженных клеток.

Если воспалительная реакция усиливается, то клетки понимают это как сигнал о подкреплении: к работе патрульных TRM подключаются вновь прибывающие из крови TCM и TEM -клетки. Эти клетки крови куда более подвижны и лучше перемещаются в эпителии: значит ли это, что именно в крови находятся готовые действовать Т-киллеры среди TEM , а CD8+ TRM выполняют в ткани хелперные и регуляторные функции?

C одной стороны, Т-хелперы по спектру Т-клеточных рецепторов более тканеспецифичны, то есть пересечений между репертуарами Т-клеточных рецепторов клеток, взятых из разных тканей, совсем мало, тогда как клетки одного клона Т-киллера встречаются в разных тканях среди TEM . Спектр функций и репертуар антигенной специфичности TRM еще предстоит исследовать, но способности к уничтожению зараженных клеток тканей у TRM -киллеров точно есть. Более того, афинность вирус-специфичных Т-клеточных рецепторов (ТКР) резидентных киллерных клеток выше, чем у вирус-специфичных клеток центральной памяти в модели мышиной инфекции полиомавирусом, протекающей в ткани головного мозга .

Однако размер популяции Т-клеток зависит не только от специфичности Т-клеточных рецепторов к инфекциям, которые раньше протекали в данном органе, но и от гомеостатической пролиферации Т-клеток — размножения более удачливых клеток для заполнения емкости органа по числу Т-лимфоцитов. По маркерам CD28 и CD127 на поверхности клеток можно отличить недавно и давно активированные через Т-клеточный рецептор клетки от тех, которые получили только гомеостатический сигнал к пролиферации от фактора роста IL-7. При старении ткани гомеостатическое размножение клеток начинает преобладать над пролиферацией активированных через ТКР клеток.

Независимо от Т-клеточных рецепторов часто функционируют NKT-клетки, крупный тип резидентных клеток печени, встречающиеся и в других тканях. Они могут быть активированы NK-клеточными рецепторами через распознавание не индивидуальных антигенов, а общих молекулярных паттернов опасности и тканевого стресса. При активации CD8+ NKT-клетки выделяют цитотоксические гранулы и лизируют подозрительные клетки ткани, к примеру, единичные опухолевые клетки и зараженные вирусами клетки, экспрессирующие и выставляющие на внешней мембране MHC-подобные стрессорные молекулы. При старении тенденция TRM к активации без Т-клеточного рецептора через NK-клеточные рецепторы или цитокиновые сигналы может приводить к ошибочному лизису клеток ткани, недостаточному контролю над хронически зараженными или перерождающимися участками эпителия.

Патологические проявления, связанные с работой резидентных Т-клеток включают в себя органоспецифичные аутоиммунные синдромы и синдромы хронического воспаления в ткани. Примеры хронического воспаления, поддерживаемого резидентными Т-лимфоцитами — контактный дерматит и псориаз, а механизмом служит выделение воспалительных факторов IL-17 резидентными Т-киллерами и IL-22 резидентными Т-хелперами дермы. CD8+ эффекторные Т-киллеры, находящиеся в головном мозге, похожи по совокупности мембранных молекул-маркеров на TRM кожи, кишечника и легких и способны подталкивать развитие перемежающегося рассеянного склероза при периодических выбросах воспалительных цитокинов; неясно, однако, есть ли в норме в головном мозге TRM популяция или же это Т-лимфоциты, оставшиеся в ткани после нейротропной вирусной инфекции .

Функции резидентных клеток памяти в норме, при отсутствии инфекции или хронического воспаления, могут включать в себя cross-talk (взаимную регуляцию преимущественно через секрецию цитокинов и костимуляторные молекулы) с неклассическими малоизученными лимфоидными клетками, такими как ассоциированные со слизистыми гамма/дельта Т-клетки, несущие альтернативный вариант сборки Т-клеточного рецептора; или лимфоидные клетки врожденного иммунитета (innate lymphoid cells, ILC), которые делят с Т-и В-лимфоцитами общие черты эпигенетического ландштафта, но не имеют Т-/В- или NK-клеточных рецепторов .

TRM клетки контактируют с антигенпрезентирующими клетками тканей — это дендритные клетки кожи и резидентные макрофаги тканей. Резидентные миелоидные клетки в разных тканях дифференцированы и слабо похожи друг на друга. К примеру, макрофаги маргинальной зоны селезенки, макрофаги печени и микроглия (макрофаги мозга) будут сильно отличаться и по морфологии, и по спектру функций. Кроме обнаружения антигенов в ткани, резидентные макрофаги заняты регуляцией процессов старения и самообновления тканей, в частности, выделяют факторы роста и цитокины, стимулирующие деление стволовых клеток тканей. В жировой ткани, к примеру, макрофаги стимулируют дифференцировку новых жировых клеток, но при переходе в активированное M1-состояние, запускают воспаление и вместо дифференцировки заставляют увеличиваться и набухать имеющиеся жировые клетки. Сопутствующие изменения метаболизма жировой ткани приводят к накоплению жировой массы и в последние годы связываются с механизмами развития ожирения и диабета II типа. В коже цитокины, выделяемые макрофагами и резидентными гамма/дельта Т-клетками стимулируют деление стволовых клеток при регенерации эпидермиса и стволовых клеток волосяных фолликулов . Можно предположить, что хелперные TRM клетки при патрулировании эпителия и образовании контактов с тканевыми макрофагами могут модулировать спектр и объем выделяемых последними факторов роста для стволовых клеток, воспалительных цитокинов и факторов ремоделирования эпителия, и тем самым участвовать в обновлении тканей.

Рисунок 5. Предполагаемые функции резидентных Т-лимфоцитов тканей. Часть функций может выполняться во взаимодействии с резидентными макрофагами (см. пояснения в тексте).

Что изучение Trm может дать медицине?

Понимание принципов работы резидентных Т-клеток абсолютно необходимо для борьбы с инфекциями, которые не поступают сразу в кровь, а проникают в организм через барьерные ткани — то есть, для подавляющего большинства инфекций. Рациональный дизайн вакцин для защиты от этой группы инфекций может быть направлен именно на усиление первого этапа защиты с помощью резидентных клеток: ситуация, при которой оптимально активированные специфичные к антигену клетки элиминируют патоген в барьерной ткани куда выгоднее, чем запуск острого воспаления для вызова Т-лимфоцитов из крови, поскольку меньше повреждается ткань.

Репертуар Т-клеточных рецепторов клеток, ассоциированных со слизистыми барьерных тканей, считается частично вырожденным и публичным, то есть идентичным для многих людей в популяции. Тем не менее, искажения при выделении Т-клеток из органов, перекос данных в результате отбора только определенных европеиодных доноров в когорты и общее небольшое количество накопленных данных секвенирования не дают уверенности в публичности репертуаров Т-клеточных рецепторов TRM-клеток. Хотя это было бы удобно, дизайн вакцин мог бы сводиться к поиску и модификации наиболее аффинных и иммуногенных пептидов из патогена, взаимодействующих с одним из публичных вариантов ТКР в барьерной для этого патогена ткани.

Конечно, представления о том, какие Т-клеточные рецепторы несут на своей поверхности TRM-клетки недостаточно для того, чтобы эффективно манипулировать иммунными реакциями в ткани. Предстоит детально изучить факторы, влияющие на заселение тканей определенными клонами Т-клеток и разобраться в механизмах активации местного тканевого иммунитета и индукции толерантности TRM. Как заселяются ниши Т-лимфоцитов в слизистых у ребенка до встречи с большим числом патогенов и, соответственно, до формирования значительного пула эффекторных Т-клеток памяти — предшественников резидентных клеток и клеток центральной памяти? Почему и как вместо классической активации лимфоцитов формируется игнорирование, реакция толерантности к микробам непатогенной флоры слизистых? Эти вопросы стоят на повестке дня в изучении резидентных клеток иммунной системы.

Определение закономерностей хоуминга Т-лимфоцитов в определенные ткани может дать преимущество в клеточной иммунотерапии опухолевых заболеваний. Теоретически, киллерные Т-клетки нужной специфичности к опухолевому антигену, активированные in vitro, должны убивать опухолевые клетки пациента. На практике подобная иммунотерапия осложняется тем, что опухолевые клетки способны подавлять иммунные реакции и приводить в неактивное состояние анергии приближающиеся к опухоли Т-киллеры. Зачастую в массе растущей опухоли и вокруг неё накапливаются анергичные Т-лимфоциты, в первую очередь, TRM данной ткани. Из множества инъецированных пациенту активных опухолеспецифичных Т-клеток до цели дойдут немногие, и даже они могут оказаться практически бесполезными в иммуносупрессивном микроокружении опухоли.

Расшифровка механизмов, которые обеспечивают попадание конкретных клонов Т-клеток в определенные ткани, может позволить более эффективно направлять к опухоли сконструированные в лаборатории Т-лимфоциты и приблизить эру доступной персонализированной иммунотерапии.

Т-лимфоциты: путешественники и домоседы

Софья Касацкая
«Природа» №2, 2016

Об авторе

Софья Алексеевна Касацкая — младший научный сотрудник лаборатории геномики адаптивного иммунитета Института биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова РАН. Область научных интересов — Т-клеточный иммунитет, нейро- и онкоиммунология. Победитель конкурса «Био/мол/текст» 2015 г. в номинации «Лучшая статья по иммунологии».

Адекватная защитная реакция организма на вторжение вирусов, бактерий и других патогенов — уничтожить пораженные клетки, не допустив распространения инфекции и гибели большого числа собственных клеток. Если инфицированная вирусом клетка его заметила, запускаются процессы врожденного иммунитета: аутофагия (утилизация внутренних компонентов клетки с помощью ферментов лизосом) и апоптоз (запрограммированная гибель клеток). Однако патогенных вирусов и бактерий очень много, к тому же они постоянно меняются до неузнаваемости. Чтобы справиться с ними, подключается система адаптивного иммунитета и его главные участники — лимфоциты. Вершиной эволюции адаптивного иммунитета стал цитотоксический Т-лимфоцит, или Т-киллер. Для распознавания фрагмента вируса (антигена) на зараженной клетке он использует Т-клеточный рецептор (T cell receptor, TCR), случайно и независимо собирающийся на каждой Т-клетке в вилочковой железе (тимусе). Механизм сборки TCR уникален и присущ только иммунной системе позвоночных животных. Считается, что эти преимущества впервые получили примитивные рыбы около 500 млн лет назад, когда в результате ретровирусной инфекции в их гаметы внедрились гены, кодирующие особые белки (рекомбиназы), ответственные за рекомбинацию генов TCR.

Классическая иммунология человека построена на изучении иммунных клеток крови просто потому, что образец крови можно взять у любого пациента и исследовать в норме и в патологии. Именно на клетках крови была выстроена классификация Т-лимфоцитов — деление на Т-киллеры и Т-хелперы, которые проверяют антигенную специфичность Т-киллеров, выдают им «лицензию на убийство» и способны управлять всем ходом иммунного ответа через сигнальные растворимые молекулы, цитокины. Позднее из ветви Т-хелперов была выделена группа регуляторных Т-клеток, подавляющих избыточный адаптивный иммунитет.

Но, как нам напоминает реклама йогурта, значительная часть клеток иммунной системы сосредоточена вокруг слизистой оболочки пищеварительного тракта и в других тканях. В то время как в 5–6 л крови взрослого человека находится около 6–15 млрд T-лимфоцитов, в эпидермисе и коже — 20 млрд Т-клеток , в печени — еще 4 млрд . Достаточно ли изучения образцов крови для полного описания функций Т-клеток, если в периферических органах Т-клеток больше, чем в кровотоке? И достаточно ли классических субпопуляций, чтобы описать все типы Т-клеток, находящихся в организме человека?

Каждая Т-клетка после сборки TCR проходит тестирование на функциональность случайно собранного рецептора (положительная селекция) и на отсутствие специфичности к собственным антигенам организма, т.е. на отсутствие очевидной аутоиммунной угрозы (отрицательная селекция). Этапы селекции происходят в вилочковой железе; при этом более 90% клеток-предшественников погибает, не сумев правильно собрать рецептор либо пройти селективный отбор. Выжившие Т-клетки пролиферируют и выходят из тимуса в кровоток — это наивные Т-лимфоциты, еще не встречавшиеся с антигеном. Наивная Т-клетка циркулирует в крови и периодически заходит в лимфоузлы, где в Т-клеточной зоне контактирует со специализированными клетками, которые представляют ей чужеродный антиген.

Миграция эффекторной Т-клетки в ткань при вирусной инфекции . Сигналы воспаления от зараженных эпителиальных клеток при участии резидентных клеток передаются эндотелию сосудов, клетки которого привлекают эффекторные Т-клетки хемокинами CXCL9, CXCL10. Роллинг: при движении по посткапиллярной венуле в ткани эффекторная клетка замедляется, образуя временные контакты с Е-селектинами и P-селектинами на клетках эндотелия. Остановка: эффекторная клетка плотно прикрепляется к эндотелию при взаимодействии LFA-1 и других альфа-интегринов с ICAM-1 / VCAM-1 / MAdCAM-1 (на эндотелии). Трансмиграция: эффекторная Т-клетка связывает эндотелиальный JAM-1 молекулами PECAM, CD99, LFA-1 и проникает через клетки эндотелия в подслизистую

После встречи с антигеном в лимфоузле Т-клетка приобретает способность снова делиться — становится предшественницей Т-клеток памяти (Stem Cell Memory T cells, TSCM). Cреди ее потомков появляются клетки центральной памяти (Central Memory T cells, TCM) и эффекторные клетки-предшественники (Effector Memory T cells, TEM), которые при делении дают короткоживущие эффекторные клетки, осуществляющие иммунную реакцию (TEMRA-клетки) . Все эти клетки выходят из лимфоузла и перемещаются по крови. Эффекторные клетки затем могут покинуть кровоток для осуществления иммунной реакции в периферической ткани органа, где находится патоген. Что потом — снова путешествие по крови и лимфоузлам?

Схема перехода потомков активированных Т-лимфоцитов между популяциями . Пояснения в тексте

Клетки стромы, т.е. основы лимфоузла, выделяют сигнальные вещества (хемокины) для того, чтобы позвать Т-клетку в лимфоузел. Распознают хемокины лимфоузлов рецепторы хоминга CCR7 и CD62L. Но на эффекторных клетках оба рецептора отсутствуют. Из-за этого долгое время было загадкой, как эффекторные клетки могут попасть из периферической ткани обратно во вторичные лимфоидные органы — селезенку и лимфоузлы.

Сложный выбор эффекторной клетки. To home — процесс хоминга, или миграции Т-клеток, например, в наиболее привычное для наивных клеток место — лимфоузел. Альтернатива — не отправляться в путешествие по организму и превратиться в резидентную клетку ткани

В то же время стали накапливаться данные (о различиях в репертуарах TCR и профилях транскрипции между TEM в крови и в других тканях), которые никак не укладывались в концепцию постоянной миграции Т-клеток между тканями и кровью. Решено было выделить новую субпопуляцию — резидентные клетки памяти (Resident Memory T cells, TRM), которые населяют определенный орган и не рециркулируют .

Откуда впервые появляются резидентные клетки ткани? Это потомки эффекторных клеток, которые потеряли способность рециркулировать. Некоторые периферические для иммунной системы ткани, например слизистая тонкого кишечника и брюшная полость, позволяют эффекторным Т-лимфоцитам проникать внутрь свободно, другие — очень ограниченно. Большой поток эффекторных Т-клеток в эти ткани наблюдается только при реакции воспаления. К тканям второго типа относятся головной и спинной мозг, отделенные барьером от иммунной системы, а также многие другие ткани: периферические ганглии, слизистые половых органов и кишечника, легкие, эпидермис, глаза. Разница между двумя типами тканей — в экспрессии дополнительных молекул хоминга для эффекторных Т-клеток, например молекул адгезии MadCAM-1 для проникновения в эпителий .

Как осуществляются иммунные реакции

При попадании в организм человека «клетки-агрессора», иммунная система распознаёт чужеродные и собственные измененные макромолекулы (антигены) и удаляет их из организма. Также при первичном контакте с новыми антигенами происходит их запоминание, что способствует их более быстрому удалению, в случае вторичного попадания в организм.

Процесс запоминания (презентация) происходит благодаря антиген-распознающим рецепторам клеток и работе антиген представляющих молекул (МНС молекул- комплексов гистосовместимости).

Что такое Т-клетки иммунной системы, и какие функции они выполняют

Функционирование иммунной системы обуславливается работой лимфоцитов. Это клетки иммунной системы, являющиеся разновидностью лейкоцитов и способствующие формированию приобретённого иммунитета. Среди них выделяют:

  • В-клетки (распознающие «агрессора» и вырабатывающие к нему антитела);
  • Т-клетки (выполняющие функцию регулятора клеточного иммунитета);
  • NК- клетки (разрушающие отмеченные антителами чужеродные структуры).

Однако, помимо регуляции иммунного ответа, Т-лимфоциты способны выполнять эффекторную функцию, разрушая опухолевые, мутировавшие и чужеродные клетки, участвовать в формировании иммунологической памяти, распознавать антигены и индуцировать иммунные реакции.

Справочно. Важной особенностью T-клеток является их способность реагировать только на презентированные антигены. На одном T-лимфоците находится только один рецептор к одному конкретному антигену. Это обеспечивает отсутствие реакции T-клеток на собственные аутоантигены организма.

Разнообразие функций Т-лимфоцитов обусловлено наличием в них субпопуляций, представленных Т-хелперами, Т-киллерами и Т-супрессорами.

Субпопуляция клеток, их стадия дифференцирования (развития), степень зрелости и т.д. определяется при помощи специальных кластеров дифференцировки, обозначаемых как СD. Наиболее значимыми являются СD3, СD4 и СD8:

  • СD3 находится на всех зрелых T-лимфоцитах, он способствует передаче сигнала от рецептора к цитоплазме. Это важный маркер функционирования лимфоцитов.
  • СD8 – это маркер цитотоксических T-клеток.
  • СD4 является маркером T-хелперов и рецептором к ВИЧ (вирус иммунодефицита человека)

Гемотрансфузионные осложнения при переливании крови Powered by Inline Related Posts

Т-хелперы

Около половины Т-лимфоцитов имеют антиген CD4, то есть являются Т-хелперами. Это помощники, стимулирующие процесс секреции антител В-лимфоцитами, стимулируют работу моноцитов, тучных клеток и предшественников Т-киллеров к «включению» в иммунную реакцию. Справочно. Функция хелперов осуществляется за счёт синтеза цитокинов (информационных молекул, регулирующих взаимодействие между клетками).

В зависимости от продуцируемого цитокина, их разделяют на:

  • T-хелперные клетки 1-го класса (продуцируют интерлейкин-2 и гамма-интерферон, обеспечивая гуморальный иммунный ответ на вирусы, бактерии, опухоли и трансплантанты).
  • T-хелперные клетки 2-го класса (секретируют интерлейкины-4,-5,-10,-13 и отвечают за образование IgЕ, а также иммунного ответа, направленного на внеклеточные бактерии).

Т-хелперы 1-го и 2-го типа всегда взаимодействуют антагонистически, то есть повышенная активность первого типа угнетает функцию второго типа и наоборот.

Работа хелперов обеспечивает взаимодействие между всеми клетками иммунитета, определяя какой тип иммунного ответа будет преобладать (клеточный либо гуморальный).

Важно. Нарушение работы клеток-помощников, а именно недостаточность их функции, наблюдается у больных с приобретённым иммунодефицитом. Т-хелперы являются основной мишенью ВИЧ. В результате их гибели нарушается иммунная реакция организма на стимуляцию антигенов, что приводит к развитию тяжёлых инфекций, росту онкологических новообразований и летальному исходу.

Т-киллеры

Это так называемые T-эффекторы (цитотоксические клетки) или клетки убийцы. Такое название обусловлено их способностью уничтожать клетки-мишени. Осуществляя лизирование (ли́зис (от греч. λύσις — разделение) — растворение клеток и их систем) мишеней, переносящих чужеродный антиген или мутировавший аутоантиген (трансплантанты, опухолевые клетки), они обеспечивают реакции противоопухолевой защиты, трансплантационного и противовирусного иммунитета, а также аутоиммунные реакции.

Т-киллеры при помощи собственных МНС-молекул распознают чужеродный антиген. Связываясь с ним на поверхности клетки, они продуцируют перфорин (цитотоксический белок).

После лизирования клетки «агрессора» Т-киллеры остаются жизнеспособными и продолжают циркулировать в крови, разрушая чужеродные антигены.

Т-киллеры составляют до 25-ти процентов от всех Т-лимфоциотов.

Справочно. Помимо обеспечения реакций нормального иммунного ответа, Т-эффекторы могут участвовать в реакциях антителозависимой клеточной цитотоксичности, способствуя развитию гиперчувствительности второго типа (цитотоксической).

Это может проявляться лекарственными аллергиями и различными аутоиммунными заболеваниями (системные заболевания соединительной ткани, гемолитическая анемия аутоиммунного характера, злокачественная миастения, аутоиммунные тиреоидиты, и т.д.).

Подобным механизмом действия обладают некоторые лекарственные средства, способные запускать процессы некроза опухолевых клеток.

Важно. Препараты с цитотоксическим действием используют в химиотерапии онкологических заболеваний.

Например, к таким медикаментам относится Хлорбутин. Это средство применяют для лечения хронического лимфолейкоза, лимфогранулематоза и рака яичников.

Т-супрессоры и клетки памяти

Супрессоры подавляют функцию хелперов и В-лимфоцитарного звена. Однако современная классификация не выносит супрессоры в отдельную субпопуляцию. Поскольку доказано, что решающую роль в угнетении иммунной реакции играют апоптоз и специфические цитокины.

Помимо основных T-лимфоцитов, в организме человека существуют потомки клеток, контактировавших с антигеном и имеющих к нему рецепторы. Это клетки обеспечивающие иммунологическую память. Они способны в течение от десяти до 15 лет сохранять память об антигене, передавая её другим клеткам.

Справочно. Благодаря клеткам памяти обеспечивается быстрый иммунный ответ при повторном попадании «агрессора» в организм.

Нулевые лимфоциты

К ним относят лимфоциты, не имеющие T и B маркеров. Они составляют до 10% от всей популяции лимфоцитов. К ним относят NК-клетки (естественные киллеры) и K-клетки (киллерные).

Справочно. Основным отличием NK-клеток от T-киллеров является способность уничтожать не сенсибиллизированные клетки-мишени.

K-клетки отвечают за антителозависимую клеточную цитотоксичность. Они отражают взаимодействия гуморального и клеточного звеньев иммунитета, а также выступают в качестве «наводчиков» эффекторных (выполняющих функцию – в данном случае уничтожение) клеток на мишень.

NК- клетки обеспечивают контроль за качеством клеток и участвуют в формировании противовирусного иммунитета, обеспечиваютзащиту от роста опухолей и размножения мутировавших (дефектных) клеток.

Диагностика клеточного иммунитета

Диагностика T- и B-лимфоцитарного звена позволяет оценить состояние клеточного иммунитета. Базовое исследование с определением процентного содержания Т-, В- и нулевых клеток проводится с целью выявления первичных или вторичных иммунодефицитов, а также при контроле иммуностимулирующего лечения.

Исследование основных популяций при помощи маркеров CD3, 8, 19, 16+5б, а также соотношение между хелперами и киллерами, позволяет комплексно оценить иммунный статус. Для исследования используют венозную кровь.

Диагностика проводится при выявлении и контроле течения:

  • аутоиммунных заболеваний (увеличено содержание CD3, CD4 хелперов);
  • лимфолейкозов (повышено количество Т-лимфоцитов CD3);
  • злокачественных новообразований (увеличено количество NK);
  • ВИЧ (CD3, CD8);
  • хронических инфекций, аллергических реакций, бронхиальной астмы и т.д.

Справочно. В зависимости от результатов анализа пациенту может быть рекомендована консультация иммунолога, гематолога, аллерголога, онколога или инфекциониста. С дальнейшим лечением у профильного специалиста по основному заболеванию.