Real time ПЦР

Содержание

Полимеразная цепная реакция в реальном времени (Real-Time PCR)

Екимов А.Н., Шипулин Г.А., Бочкарев Е.Г. Рюмин Д.В.

ЦНИИ Эпидемиологии РФ

Принципиальной особенностью полимеразной цепной реакции в реальном времени является возможность детекции накопления продуктов амплификации непосредственно во время проведения амплификации. Так как кинетика накопления ампликонов напрямую зависит от числа копий исследуемой матрицы, это позволяет проводить количественные измерения ДНК и РНК инфекционных агентов. Полученная информация может быть использована для проведения мониторинга эффективности проводимой терапии, оценки клинического прогноза. В отличие от других методов количественного определения ДНК матрицы в пробе, ПЦР в реальном времени не требует дополнительных манипуляций, связанных с раститровкой ДНК исследуемой пробы или полученных в ходе ПЦР ампликонов, которые усложняют постановку анализа и могут приводить к появлению ложноположительных результатов. Подобный подход позволяет отказаться от стадии электрофореза, что ведет к резкому уменьшению вероятности контаминации исследуемых проб продуктами амплификации, а также позволяет снизить требования, предъявляемые к ПЦР лаборатории.

Введение.

Широкое внедрение в область практического здравоохранения полимеразной цепной реакции (ПЦР) обусловлено простотой ее выполнения, низкой себестоимостью и надежностью. Вместе с тем, сегодня уже очевидно, что дальнейшее развитие ПЦР получит в области количественного определения нуклеиновых кислот (ДНК и РНК) инфекционных агентов.

Количественное определение ДНК инфекционных агентов в ходе лечения позволяет получать информацию о правильности или безрезультатности проводимой терапии, помогает предсказывать периоды обострения заболевания и принимать адекватные меры для скорейшего излечения больного без нанесения ущерба для его здоровья, связанного с неэффективной терапией.

Существует большое количество способов получить данные о концентрации нуклеиновых кислот в пробе методом ПЦР, но все они требуют дополнительных трудоемких этапов работы, связанных с предварительной раститровкой выделенной из анализируемой пробы ДНК, или полученных в ходе ПЦР ампликонов, что приводит к увеличению времени, необходимого для постановки анализа и сложности интерпретации полученных результатов . Также, наличие дополнительных этапов работы увеличивает вероятность ошибки и получения недостоверного результата.

ПЦР в реальном времени.

На сегодня существует метод, лишенный вышеперечисленных недостатков — это метод ПЦР в реальном времени (Real-Time PCR) . Сущность метода заключается в исследовании накопления продуктов амплификации с помощью специального прибора без последующего электрофореза. Так как кинетика накопления продуктов амплификации связана с исходным количеством матрицы, это дает возможность точно оценить её количество .

Отличительными чертами данного метода, в отличие от классической ПЦР, является возможность количественного определения ДНК/РНК инфекционных агентов в исследуемом материале, отсутствие стадии электрофореза, менее строгие требования к организации ПЦР-лаборатории и автоматическая регистрация и интерпретация полученных результатов.

Отсутствие стадии электрофореза позволяет минимизировать риск контаминации продуктами ПЦР и таким образом резко уменьшить число ложноположительных результатов. Поскольку регистрация результатов проводится непосредственно в процессе ПЦР, весь анализ можно проводить в одной-двух комнатах лаборатории и нет необходимости в отдельном помещении для детекции продуктов реакции.

Данная методика в течение последних пяти лет успешно применяется в крупнейших диагностических и научно-исследовательских центрах развитых стран мира и в ближайшее время станет так же широко распространена, как и ПЦР в ее сегодняшнем формате, благодаря экономии производственных площадей, уменьшению количества персонала и востребованности количественного определения ДНК/РНК.

Использование математических методов анализа позволяет проводить автоматическую интерпретацию полученных результатов и снимает проблему субъективной оценки электрофореграмм.

Материальная база.

Для постановки ПЦР в реальном времени необходим специальный амплификатор, отличительной особенностью которого является возможность возбуждать и детектировать флуоресценцию, отражающую накопление ампликонов, на каждом цикле амплификации.

Детекция продуктов амплификации.

Для выявления продуктов амплификации в режиме реального времени используют следующие наиболее распространенные подходы:

1. Выщепление 5′ концевой метки (TaqMan Assay).

Данная методика основана на использовании 5′-экзонуклеазной активности полимеразы. В реакционную смесь добавляют ДНК-зонды, в состав которых входит флуоресцентная метка в 5′-положении и гаситель флуоресценции в 3′-положении, а также фосфатная группа в 3′-положении. Эти зонды имеют места посадки внутри амплифицируемой области. Гаситель поглощает испускаемое флуоресцентной меткой излучение, а фосфатная группа в 3′-положении блокирует полимеразу.

В ходе ПЦР во время стадии отжига праймеров происходит присоединение ДНК-зонда к комплементарной цепи ДНК, причем чем больше продуктов амплификации образуется в ходе ПЦР, тем больше молекул зондов свяжется с соответствующими ампликонами. Во время стадии элонгации полимераза синтезирует комплементарную цепь ДНК и при достижении зонда начинает его расщеплять благодаря наличию 5′-экзонуклеазной активности. Таким образом происходит разъединение флуоресцентной метки и гасителя, что приводит к увеличению детектируемого свечения . Очевидно, что чем больше ампликонов было наработано в ходе ПЦР на данный момент времени, тем интенсивнее будет свечение.

2. Использование зондов с комплементарными концевыми последовательностями (molecular beacons).

Данная методика отличается от описанной выше тем, что концевые последовательности зонда представляют собой взаимно комплементарные области, поэтому при температуре отжига праймеров они схлопываются и образуют шпильки . Внутренняя область зондов содержит нуклеотидную последовательность, комплементарную амплифицируемой области. При отжиге праймеров зонды, не присоединившиеся к ДНК матрице, остаются в «схлопнутом» состоянии, так что происходит тушение флуоресценции.

Те же зонды, которые отжигаются на матрицу, разворачиваются, и флуоресцентная метка и гаситель расходятся в разные стороны. Таким образом, увеличивается интенсивность свечения.

3. Применение 2-х зондов с резонансным переносом энергии (LightCycler assay).

Данный способ детекции накопления продуктов амплификации отличается повышенной специфичностью, так как увеличение флуоресценции происходит при комплементарном связывании с ампликонами сразу 2-х ДНК зондов . Принцип метода заключается в переносе энергии от одного флуорофора, находящегося на 3` конце первого зонда, ко второму флуорофору, находящемуся на 5` конце второго зонда, причем расстояние между флуорофорами составляет 1-3 нуклеотида.

При одновременном связывании обоих зондов с ДНК матрицей испускаемое первым флуорофором излучение передается на второй флуорофор, а его излучение детектируется прибором. Таким образом, возрастает специфичность анализа.

4. Использование интеркалирующих агентов.

Этот способ детекции основан на том факте, что флуоресценция бромистого этидия и SYBR Green I значительно возрастает при их внедрении в двухцепочечные молекулы ДНК . Таким образом, можно наблюдать за накоплением продуктов амплификации.

Очень важно отметить то, что увеличение флуоресценции может быть связано как с накоплением специфического продукта, так и неспецифического (праймеры-димеры, шмер). Для получения корректных результатов необходимо дополнительное изучение полученных ампликонов с помощью построения так называемых «кривых плавления» (melting curves).

Кривые плавления

Для этого после окончания ПЦР реакционную смесь нагревают и непрерывно измеряют флуоресценцию. По достижении температуры плавления продукта амплификации флуоресценция резко снижается.

Каждое резкое уменьшение флуоресценции на графике соответствует числу полосок, получаемых на электрофорезе, то есть числу разных типов ампликонов. Для облегчения работы с полученной информацией проводят дифференциальный анализ кривой плавления. Такой способ визуализации полученных данных гораздо удобнее для понимания и анализа.

Применение кривых плавления не ограничивается только детекцией продуктов амплификации с помощью бромистого этидия и SYBR Green I. При использовании кривых плавления в системах с ДНК-зондами (Taq-man assay, beacons) возможно различать точечные мутации, расположенные внутри областей связывания ДНК-матрицы и зонда. Наличие таких мутаций способно привести к изменению температуры плавления зонда и к изменениям в графике кривой плавления . Использование кривых плавления не требует от оператора амплификатора никаких дополнительных манипуляций с пробирками, а интерпретация полученных данных автоматизирована и формализована.

Подводя итоги стоит отметить следующее: использование ДНК-зондов в том или ином варианте является наиболее предпочтительным в свете повышения специфичности анализа. Однако к недостаткам зондов относится высокая стоимость, что делает работу по подбору зондов, праймеров и условий амплификации дорогостоящей. Вместе с тем, использование интеркалирующих агентов является очень простым и дешевым. Отпадает необходимость подбора специальных праймеров, зондов, так как можно пользоваться уже используемыми праймерами, эффективность работы которых уже проверена. Эти обстоятельства делают применение интеркалирующих агентов весьма привлекательным.

Заключение

В настоящее время создана научная и материально-техническая база для широкого внедрения в клиническую лабораторную диагностику новой генодиагностической технологии — количественного определения ДНК/РНК инфекционных агентов — ПЦР в реальном времени (Real-Time PCR). В ближайшие годы данная технология будет применяться в гепатологии (вирусные гепатиты В и С), в клинике ВИЧ и ВИЧ-ассоциированных инфекций (в первую очередь герпетическая и цитомегаловирусная инфекции), в дерматовенерологии, фтизиатрии, гастроэнтерологии, пульмонологии. С помощью ПЦР в реальном времени будет оцениваться эффективность проводимой терапии и клинический прогноз заболевания.

Список литературы

ПЦР для начинающих

Руководство по ПЦР в реальном времени для начинающих

Полимеразная цепная реакция, или ПЦР – это настоящий краеугольный камень современной молекулярной биологии. В наше время все большее распространение получает ее «продвинутая» версия под названием полимеразная цепная реакция в реальном времени (Real-time PCR), благодаря которой стало возможным раскрыть максимальный потенциал данной методики.

Чтобы понять суть Real-time PCR, необходимо имеет представление о том, какие процессы проходят в пробирке во время «обычной» ПЦР.

ПЦР представляет собой реакцию амплификации молекул ДНК. Рассмотрим два случая, когда в исследовательской практике возникает необходимость амплифицировать (то есть увеличить во много раз) количество ДНК в образце. Например, для судмедэксперта важно размножить небольшое количество ДНК, которая была найдена на месте преступления. Либо исследователю нужно сравнить два образца и узнать, в каком из них больше ДНК. Для такого рода анализа необходимо, чтобы в образце было достаточно ДНК для ее детекции. Если ДНК слишком мало, в сравниваемых образцах проводят ПЦР при одних и тех же условиях, и по количеству амплифицированного продукта определяется, в каком из образцов было больше ДНК изначально.

Главным веществом, благодаря которому происходит ПЦР, является термостабильная ДНК-зависимая ДНК-полимераза. Этот фермент синтезирует цепочку ДНК из свободных нуклеотидов, содержащихся в реакционной смеси (dNTPs), по принципу комплементарности. Матрицами для создания новых цепочек являются исследуемые молекулы ДНК. Важный момент – ДНК-полимераза «работает» на одноцепочечной ДНК, при этом «точка старта» для нее может быть только на двухцепочечной ДНК.

Именно эта особенность данного фермента позволяет амплифицировать только те фрагменты ДНК, которые интересны исследователю, а не весь геном организма сразу. Для этого в реакционную смесь добавляют небольшие фрагменты ДНК (олигонуклеотиды), называемые праймерами (англ. primer, то есть «первичные»). Они присоединяются (отжигаются) на матричную молекулу ДНК вокруг исследуемого гена, запуская работу полимеразы в нужном направлении.

Контроль ПЦР обеспечивается благодаря смене температуры образцов – за счет этого обеспечивается регуляция активности фермента и присоединения праймеров.

Для того, чтобы начать реакцию, температуру повышают до 95°C. При такой температуре двухцепочечная ДНК денатурирует до одноцепочечной.

Потом температуру понижают до ~60°C. Это позволяет праймерам присоединиться вокруг исследуемого фрагмента.

Таким образом, у полимеразы появляется точка старта, от которой она может начинать синтез новой цепочки ДНК:

Оптимальная температура для работы ДНК-полимеразы составляет 72°C, поэтому на этом этапе цикла (он называется элонгацией) температура образца повышается до 72°C, для того, чтобы фермент работал с максимальной скоростью.

По окончанию цикла мы получаем в 2 раза больше ДНК, чем было в начале.

Такие температурные изменения повторяются по кругу в течение 40 «циклов». То есть, из одной копии ДНК получаются две, из двух – четыре, из четырех – восемь и так далее, пока их количество не будет исчисляться миллиардами.

После амплификации полученную ДНК можно разделить на агарозном геле и окрасить (визуализировать). Чем ярче будет полоса на геле, тем большее количество копий нужных нам генов получилось в результате реакции.

ПЦР в реальном времени (Real-time PCR)

Точно такие же принципы лежат в основе ПЦР в реальном времени. Но вместо того, чтобы оценивать продукты амплификации на геле после проведения реакции, за этим процессом можно наблюдать «онлайн». Обеспечивается это тем, что образец, помещенный в амплификатор, на протяжении всего процесса находится под наблюдением специальной камеры, которая называется детектором.

Существует множество технологий мониторинга процесса ампификации, но суть у них одна: при синтезе каждой новой копии ДНК возникает флуоресцентный сигнал, который улавливается детектором. Чем интенсивней флуоресценция, тем больше продуктов амплификации находится в образце.

ПЦР в реальном времени имеет множество преимуществ перед обычной ПЦР:

  • Во-первых, за реакцией возможно наблюдать с самого начала и сразу увидеть, в каких образцах реакция запустилась успешно, а в каких – нет.
  • Можно очень точно рассчитать эффективность реакции.
  • Нет необходимости проводить гель-электрофорез, так как все показатели реакции будут четко показаны на амплификационной кривой.
  • Самым большим преимуществом является возможность проводить полноценно количественную оценку экспрессии генов. Обычная ПЦР является, в лучшем случае, полуколичественным методом анализа.

Зонд или SYBR® Green. Выбор правильной системы визуализации для вашего эксперимента.

Приступая к планированию ПЦР-анализа, важно определить систему визуализации продуктов реакции. В общем случае, существуют две системы: интеркалирующие красители (напр. SYBR® Green) и растворы, основанные на линейно разрушаемых зондах (напр. TaqMan®). В основе обоих систем состоит принцип генерирования флуоресцентных сигналов при синтезе новых копий ДНК и детекции этих сигналов прибором в режиме реального времени.

SYBR® Green (или любой другой интеркалирующий краситель)

SYBR® Green является наиболее используемым интеркалирующим красителем в современной практике. Кроме него существует множество других красителей подобного класса, но наверняка вы слышали именно о SYBR® Green. Принцип действия у них один: сам краситель имеет собственный флуоресцентный фон, но связываясь с двухцепочечной ДНК, он встраивается между ее цепочками. Это приводит к изменению конфигурации молекулы красителя, заставляя ее флуоресцировать горазда сильнее. Все просто – чем больше ДНК образуется в процессе ПЦР, тем сильнее происходит флуоресценция в образце.

Линейно разрушаемые зонды (по типу TaqMan®)

ДНК-зонды представляют собой меченые флуоресцентными красителями олигонуклеотиды (короткие фрагменты ДНК). Их нуклеотидная последовательность такова, что они гибридизируются на матричной молекуле ДНК рядом с праймером и дают флуоресцентный сигнал. 5’-конец зонда мечен репортерным флуоресцентным красителем. Чаще всего используется зеленый краситель FAM, но также могут использоваться VIC, ROX, CY5 и другие, которые флуоресцируют на другой длине волны, благодаря чему возможно проводить одновременный анализ по разным каналам детектора. На 3’-конце зонда располагается молекула гасителя – она обеспечивает подавление флуоресценции метки. Таким образом, когда репортерный краситель и его гаситель находятся на физически близком расстоянии друг от друга, общий уровень флуоресценции низкий.

В процессе ПЦР зонд прикрепляется к матричной молекуле ДНК сразу после праймера. Далее, зонд расщепляется полимеразой во время реакции. За счет этого молекула гасителя оказывается далеко от репортера, его флуоресценция возрастает, и так происходит на каждом цикле ПЦР.

Что нужно учитывать: стоимость

Оценка стоимости является неотъемлемой частью планирования исследований. Использование линейно разрушаемых зондов обходится дороже, чем интеркалирующих красителей. То есть, если вас интересует большое количество генов, интеркалирующий краситель будет наилучшим выбором. Если же у вас есть небольшой набор генов и вам надо сосредоточится исключительно на них, следует использовать зонды.

Что нужно учитывать: специфичность

Зонды: В общем случае, линейно разрушаемые зонды дают более точные результаты. Объясняется это их высокой специфичностью. Если вы получаете флуоресцентный сигнал от зонда, то можно быть уверенным, что он гибридизировался именно с целевым участком генома – гибридизация происходит исключительно в ограниченом праймерами пространстве. Благодаря этому нет необходимости проводить постамплификационных анализов для того, чтобы убедиться, что все прошло правильно.

Интеркалирующие красители: Слабым местом интеркалирующих красителей является то, что они неспецифичны. Если во время ПЦР поисходит амплификация не того участка ДНК, либо вовсе нескольких разных участков, вы все равно получаете кривую амплификации, которая идентична кривой при амплификации целевых генов. Интеркалирующие красители генерируют флуоресцентный сигнал при связывании с любой двухцепочечной ДНК, независимо от ее нуклеотидной последовательности. То есть, необходимо проводить дополнительные анализы, которые подтверждают наличие специфичных продуктов амплификации, например, оценку графика температуры плавления ампликонов. Подобные виды анализов требуют высокого уровня квалификации оператора, но только благодаря им можно рассчитывать на достоверность полученных данных.

Что нужно учитывать: количество ДНК-матрицы

Так как интеркалирующие красители обладают малой специфичностью, их эффективность при низкой концентрации ДНК в образце крайне мала. При таких условиях праймеры часто образуют между собой димеры или отжигаются на нецелевых участках ДНК. При этом образуется двухцепочечная ДНК и интрекалирующие красители все равно будут давать сигнал.

Можно взять за правило: если количество ДНК в ваших образцах малое (значение Cq>30), то использование интеркалирующих красителей будет сопряжено с трудностями и рекомендуется применять линейно разрушаемые зонды. Если ДНК много (значение Cq<30), то интрекалирующие красители являются отличным выбором.

Реактивы и наборы реактивов

Все, что вам необходимо для проведения качественого Real-time PCR.

ПЦР в реальном времени является очень информативным и многофункциональным инструментом для молекулярной биологии. При правильном подборе методик, реактивов и оборудования возможно проводить исследования любого уровня сложности в кратчайшие сроки. Как и для опытных исследователей, так и для делающих первые шаги в науке, компания “ВМТ” окажет вам всестороннюю поддержку – мы являемся профессионалами своего дела и обеспечим максимально качественный результат ваших исследований.

ВМТ® Наборы для выделения ДНК/РНК

Наши наборы для выделения позволяют выделить ДНК и РНК практически из любого образца благодаря технологии сорбента на магнитных шариках – выделение происходит быстро, качественно и легко.

Наборы референтных генов

Для того, чтобы вы имели возможность проводить положительный контроль, ВМТ предоставляет широкий ассортимент референтых генов.

ПЦР в реальном времени

  • Амплификатор в режиме реального времени Agilent Stratagene MX3005P
  • Амплификатор в режиме реального времени Agilent Stratagene MX3000P
  • Амплификатор детектирующий в режиме реального времени ДТпрайм
  • Амплификатор для количественной ПЦР Agilent Aria MX
  • Амплификаторы в режиме реального времени Thermo QuantStudio
  • Лабораторное оборудование Stratagene для ПЦР
  • Приборы для ПЦР в реальном времени «АНК-32» и «АНК-М»
  • Система ПЦР в реальном времени Applied Biosystems 7500
  • Термоциклер для ПЦР в реальном времени PikoReal
  • Термоциклер для ПЦР в реальном времени TOptical
  • Экспресс-амплификатор в режиме реального времени АНК-4

В настоящее время в практическое здравоохранение внедряется новая технология ПЦР — ПЦР в реальном времени (ПЦР-РВ, Real-Time PCR). Ее принципиальной особенностью является мониторинг и количественный анализ накопления продуктов полимеразной цепной реакции, а также автоматическая регистрация и интерпретация полученных результатов. Этот метод не требует стадии электрофореза, что позволяет снизить требования, предъявляемые к ПЦР лаборатории. Благодаря экономии производственных площадей, уменьшению количества персонала и востребованности количественного определения ДНК/РНК этот метод в последние годы успешно применяется в крупнейших санитарно-эпидемических, диагностических и научно-исследовательских центрах развитых стран мира, замещая ПЦР в ее сегодняшнем («классическом») формате.

Существует два основных подхода к детекции результатов ПЦР в реальном времени: с помощью интеркалирующих красителей и на основе флуоресцентно-меченых олигонуклеотидных зондов.

Низкоспецифичная детекция результатов ПЦР-РВ с помощью интеркалирующих красителей

Детекция продуктов амплификации возможна за счет увеличения флуоресценции интеркалирующего красителя при образовании комплекса с двуцепочечной ДНК. Самый популярный краситель на сегодняшний день — SYBR Green I. Это чувствительный флуоресцентный индикатор двухцепочечной ДНК. Максимум флуоресценции в комплексе с ДНК составляет 521 нм, максимум возбуждения — 497 нм (второй максимум около 254 нм). Хорошо возбуждается стандартным 488-нм лазером. Квантовый выход флуоресценции — около 0.8 (что в 5 раз превышает квантовый выход комплекса этидий-ДНК).

Реже применяются красители EVA Green, LCGreen, Cyto9. Низкая специфичность детекции результатов ПЦР-РВ при использовании интеркалирующих красителей обусловлена тем, что флуореценция раствора вызывается накоплением любой двуцепочечной ДНК в реакционной смеси, в том числе и неспецифической! Следовательно, остается вероятность регистрации ложноположительного результата.

Как работает ПЦР в реальном времени c использованием специфичных зондов?

Более высокой специфичности детекции результатов ПЦР в режиме реального времени можно достигнуть за счет наличия в реакционной смеси дополнительного олигонуклеотида — гибридизационного зонда. Такой зонд «отжигается» (комплементарно соединяется с ДНК) на участке ампликона меджу прямым и обратным праймером. На разных концах зонда расположены флуорофор и тушитель флуоресценции этого красителя. Когда флуорофор и тушитель связаны с олигонуклеотидным зондом, наблюдается лишь незначительная флуоресцентная эмиссия. Во время процесса амплификации за счет 5`-экзонуклеазной активности Taq-полимеразы флуоресцентная метка переходит в раствор, освобождаясь от соседства с тушителем и генерирует флуоресцентный сигнал, усиливающийся в реальном времени пропорционально накоплению амплификата.

Таким образом, в случае если используемые праймеры «отожгутся» на неспецифических участках с образованием в ходе ПЦР-РВ «нецелевого» продукта, то его последовательность не будет иметь участок, комплементарный гибридизационному зонду и, соответственно, «нецелевые» ампликоны не будут регистрироваться как целевые. При этом для такого варианта ПЦР-РВ можно одновременно использовать несколько видов красителей и гасителей их флуоресценции (с неперекрывающими спектрами излучения). Это позволяет осуществлять мультиплексную ПЦР.

Оборудование и расходные материалы для ПЦР анализа в реальном времени


Амплификатор в режиме
реального времени Mx3005P

Амплификатор в режиме
реального времени Mx3000P

Амплификатор в режиме
реального времени TOptical
Термоциклер для ПЦР
в реальном времени PikoReal
Система ПЦР в реальном
времени Applied Biosystems 7500
Амплификатор в режиме
реального времени АНК-32-М
Экспресс-амплификатор
в режиме реального времени АНК-4
Реагенты для ПЦР Системы для выделения
и очистки нуклеиновых кислот
Лабораторный пластик и посуда Автоматические пипетки Центрифуги и вортексы
Амплификатор для ПЦР
в реальном времени
Smart Cycler II
ПЦР боксы для стерильных работ Термоблоки

ПЦР в режиме реального времени – новейшие технологии в диагностике инфекций

ДНК-диагностика- это один из наиболее современных высокотехнологичных методов исследования. ДНК-анализы широко применяются в диагностике инфекционных заболеваний, позволяя обнаруживать даже единичные микроорганизмы в организме человека.

ДНК-диагностика объединяет несколько методов исследования, самый распространенный из них — метод ПЦР (полимеразной цепной реакции).

Что такое ПЦР

ПЦР — (Polymerase chain reaction, PCR diagnostics) — расшифровывается как полимеразная цепная реакция.

ПЦР-диагностика — это метод лабораторной диагностики инфекционных заболеваний, в частности, этот метод широко применяется и для диагностики ИППП- инфекций, передающихся половым путем.

Анализ методом ПЦР основан на обнаружении в материале исследования небольшого фрагмента ДНК возбудителя той инфекции, которую подозревает врач. «Небольшой фрагмент ДНК» — это несколько сотен пар оснований ДНК – кирпичиков, расположенных в строго определенной последовательности, и потому образующих неповторимый узор. Для ПЦР-диагностики инфекций достаточно небольшого фрагмента, поскольку любая ДНК включает в себя не менее нескольких тысяч оснований.

При проведении ПЦР-анализа ведется поиск такого фрагмента ДНК инфекции, который специфичен только для данного микроорганизма. Это значит, что этот фрагмент ДНК «особенный» — он встречается только у этого микроба (или группы родственных микробов), но не встречается ни у одного другого микроба.

Сама полимеразная цепная реакция используется для того, чтобы найденный фрагмент размножить, клонировать: чтобы однозначно «увидеть» эти фрагменты ДНК, к окончанию реакции их должно быть не мене 1012 штук.

История открытия ДНК и разработки метода ПЦР

Первоначально сам принцип метода полимеразной цепной реакции (ПЦР) был разработан Кэри Мюллисом в 1983г. Открытие ПЦР стало одним из наиболее выдающихся событий в области молекулярной биологии за последние 20 лет, и за разработку ПЦР-анализа Кэрри Мюллис уже в 1993 г. был удостоен Нобелевской премии в области химии.

Появлению метода проведения полимеразной цепной реакции предшествовали определенные достижения молекулярной генетики: к тому времени уже были расшифрованы нуклеотидной последовательности геномов ряда микроорганизмов и выделены специфические.

Также появлению ПЦР много способствовало открытие уникального фермента ДНК-полимеразы (или taq-полимеразы). Именно этот фермент катализирует и «контролирует» все процессы во время проведения анализа методом ПЦР. Особенность этого фермента — он термостабилен, исключительно термостоек: он выдерживает нагревание до температуры кипения без потери активности, а «любимый» его температурный режим во время работы — 72оС. Многие реакции при проведении ПЦР идут почти исключительно при повышенной температуре.

С момента появления метода, ПЦР-исследования завоевывают все большую и большую популярность. В настоящее время в практическое здравоохранение внедрена новая технология ПЦР — ПЦР в реальном времени (Real-Time PCR). Ее принципиальной особенностью является мониторинг и количественный анализ накопления продуктов полимеразной цепной реакции и автоматическая регистрация и интерпретация полученных результатов. Этот метод не требует стадии электрофореза, что позволяет избежать ошибок и ложноположительных результатов, связанных с контаминацией и значительно ускорить получение результата. ПЦР в реальном времени использует флуоресцентно меченые олигонуклеотидные зонды для детекции ДНК в процессе ее амплификации. ПЦР в реальном времени позволяет провести полный анализ пробы в течение 20-60 мин и теоретически способен детектировать даже одну молекулу ДНК или РНК в пробе.

КДЛ «ОЛИМП» выполняет ПЦР-исследования на единственном в Казахстане 6-ти канальном анализаторе Rotor-Gene™ 6000 (Германия). Уникальными особенностями этого прибора является то, что он позволяет проводить одномоментную детекцию 5-ти различных возбудителей! Подобных возможностей пока нет у других лабораторий в Астане и ближайших регионах.

Материал для сдачи ПЦР-анализа

Материалом для проведения ПЦР-диагностики может служить:

  • соскоб эпителиальных клеток (соскоб из уретры у мужчин и у женщин, соскоб из цервикального канала)
  • кровь, плазма, сыворотка
  • крови
  • биологические
  • жидкости (сок простаты, плевральная, спинномозговая, околоплодная, суставная жидкости, слюна)
  • моча (используется первая порция утренней мочи)
  • мокрота
  • слизь
  • и другие биологические выделения

Как правильно подготовиться к ПЦР-анализу (ДНК-диагностике)

Достоверность результатов лабораторной диагностики зависит не только от опыта и профессионализма врача-лаборанта, возможностей данной лаборатории, но и от того, соблюдал ли пациент рекомендации врача, насколько правильной была его подготовка к проведению анализа. На самом деле ничего сложного в правильной подготовке нет. При сдаче анализа методом ПЦР врачи рекомендуют соблюдать следующие правила:

  • Для проведения ПЦР-исследований на инфекции, передаваемые половым путем, за месяц до взятия материала желательно воздержаться от приема антибиотиков и лечебных процедур (если иное не предписано Вашим лечащим врачом).
  • У мужчин исследование проводят утром или в течение дня до мочеиспускания, рекомендуют не мочиться в течение 4-5 часов до взятия пробы.
  • Женщины сдают соскоб на ПЦР-исследование до менструации или через 1-4 дня после ее окончания. Непосредственно перед сдачей соскоба необходимо воздержаться от половой жизни, а перед взятием материала из уретры — от мочеиспускания в течении 1-2 часов. Накануне обследования женщины не должны проводить спринцевание.

Где можно сдать анализы на ПЦР

Анализы на ПЦР Вы можете сдать в медицинских центрах, являющихся партнерами КДЛ «ОЛИМП»:

Медцентр «Шахар», пр.Абылай-хана, 6/2, тел.: 35-94-71;

Медцентр «ДаНель», ул.Ауэзова, 22, тел.: 39-16-75, 39-16-22;

По всем интересующим вопросам Вы также можете получить необходимую информацию у квалифицированного врача-консультанта по телефонам: 8 (7172) 444-111

    Real-time PCR — это семейство методик количественного PCR со следующими чертами:

    1. ќпределение выхода продукта реакции после каждого цикла амплификации.
    2. ѕостроение по этим данным кинетической кривой PCR.
    3. ќпределение относительной концентрации субстрата на основании анализа этой кривой.

    ƒл€ детекции PCR-продукта используютс€ флуоресцентные красители, обеспечивающие флуоресценцию, пр€мо пропорциональную количеству ѕ÷–-продукта — репортерную флуоресценцию. ћеханизмы генерации репортерной флуоресценции различаютс€ в зависимости от типа real-time PCR.

    инетическа€ крива€ PCR в координатах «”ровень репортерной флуоресценции — цикл амплификации» имеет сигмоидную форму (–ис. 1). ¬ ней можно выделить три стадии:

    1. —тадию инициации (когда PCR-продукты еще не детектируетс€ флуоресцентной меткой).
    2. Ёкспоненциальную стадию (в которой наблюдаетс€ экспоненциальна€ зависимость количества флуоресценции от цикла PCR).
    3. ѕлато (стадию насыщени€).

    –ис. 1. инетические кривые real-time PCR

    Ёкспоненциальна€ стади€ PCR описываетс€ уравнением:

    Pn = P0 * E n (1)

    где Pn — количество молекул продукта/репортерной флуоресценции к циклу n, P0 — исходное количество молекул, содержащих амплифицируемый фрагмент (template), E — эффективность амплификации. ¬ идеальных услови€х E = 2, т.е. на каждом цикле цепной реакции происходит удвоение количества продукта.

    ѕрологарифмируем обе части уравнени€ 1 и преобразуем его к виду:

    n = — (1/log E) * log P0 + log Pn/log E (2)

    Ќазовем пороговым циклом (threshold cycle, C(T)) такой цикл n, на котором достигаетс€ некий заданный уровень репортерной флуоресценции — порогова€ флуоресценци€ PC(T)=const. ƒл€ n=C(T) уравнение 2 принимает вид:

    C(T) = — (1/log E) * log P0 + log PC(T)/log E (3)

    “.е. значение —(T) пр€мо пропорционально логарифму количества субстрата. “аким образом, real-time PCR позвол€ет сравнивать количества субстрата при условии, что эффективность реакции и заданный уровень пороговой флуоресценции одинаковы дл€ каждой из сравниваемых реакций.

    1. ќбщий принцип real-time PCR