Иммунная система человека анатомия

№ 119 Органы иммунной системы, их классификация. Закономерности их строения в онтогенезе человека.

Иммунная система объединяет органы и ткани, обеспечи­вающие защиту организма от генетически чужеродных клеток или веществ, поступающих извне или образующихся в орга­низме.

Иммунную систему составляют все органы, которые участвуют в образовании клеток лимфоидного ряда, осуществляют защитные реакции организма, создают иммунитет — невосприимчивость к веществам, обладающим чужеродными антигенными свойствами. Паренхима этих органов образована лимфоидной тканью, которая представляет собой морфофункциональный комплекс лимфоцитов, плазмоцитов, макрофагов и других клеток, находящихся в петлях ретикуляр­ной ткани. К органам иммунной системы принадлежат костный мозг, в котором лимфоидная ткань тесно связана с кроветворной, тимус (вилочковая железа), лимфатические узлы, селезенка, скопления лимфоидной ткани в стенках полых органов пищева­рительной, дыхательной систем и мочевыводящих путей (миндалины, лимфоидные — пейеровы — бляшки, одиночные лимфоид-ные узелки).

В отношении функции иммуногенеза перечисленные органы подразделяют на центральные и периферические. К центральным органам иммунной системы относят костный мозг и тимус. В ко-стном мозге из его стволовых клеток образуются В-лимфоциты (бурсазависимые), независимые в своей дифференцировке от тимуса. Костный мозг в системе иммуногенеза у человека в на-стоящее время рассматривается в качестве аналога сумки (bursa) Фабрициуса — клеточного скопления в стенке клоачного от-дела кишки у птиц.

К периферические органы иммунной системы относят миндалины, лимфоидные узелки, расположенные в стенках полых органов пище­варительной и дыхательной систем, мочевыводящих путей, лим­фатические узлы и селезенку. Функции периферических органов иммунной системы находятся под влиянием центральных органов иммуногенеза.

№ 120 Тимус развитие, топография, строение, кровоснабжение и иннервация.

Тимус, thymus является центральным органом иммуногенеза. В тимусе стволовые клетки превращаются в Т-лимфоциты, В дальнейшем Т-лимфоциты пос­тупают в кровь и лимфу, покидают тимус и заселяют тимусзависимые зоны периферических органов иммуногенеза. Тимус секретирует также вещества под названием «тимический (гуморальный) фактор». Эти вещества влияют на функции Т-лимфоцитов.

Тимус состоит из двух асимметричных по величине долей: правой доли, lobus dexter, и левой доли, lobus sinister.

Топография. Располагается тимус в передней части верхнего средостения, между правой и левой медиастинальной плеврой. Верхняя часть тимуса лежит позади гру-дино-подъязычных и грудино-щитовидных мышц. Передняя по­верхность тимуса прилежит к задней поверхности рукоятки и тела грудины (до уровня IV реберного хряща).

Строение. Тимус имеет нежную тонкую соединительнотканную капсулу, capsula ihymi, от которой внутрь органа, в его корковое вещество, отходят междольковые перегородки, septa coriicales, разделяющие вещество тимуса на дольки, lobuli Ihymi. Паренхима тимуса состоит из более темного коркового вещества, cortex thymi, и более светлого мозгового вещества, medulla thymi, за­нимающего центральную часть долек.

В мозговом веществе имеются тельца тимуса, corpuscula thymici (тельца Гассаля).

Развитие. Тимус развивается в виде парного органа из эпителия головной кишки. У человека тимус закладывается в виде парного выпячивания эпителия III и IV жаберных карманов в конце 1-го — начале 2-го месяца внутриутробной жизни.

Кровоснабжение и иннервация тимуса. К тимусу от внутрен­ней грудной артерии, дуги аорты и плечеголовного ствола от­водят rr. thymicl. В междольковых перегородках они делятся на более мелкие ветви, которые проникают внутрь долек, где разветвляются до капилляров. Вены тимуса впадают в плечеголов; ные вены, а также во внутренние грудные вены.

Лимфатические капилляры тимуса, которых больше в корковом веществе, образуют в паренхиме органа сети, из которых формируются лимфатические сосуды, впадающие в передние средостенные и трахеобронхиальные лимфатические узлы.

Нервы тимуса являются ветвями правого и левого блуждающих нервов, а также происходят из шейно-грудного (звездчатого) и верхнего грудного узлов симпатического ствола.

№ 121 Центральные органы иммунной системы костный мозг, тимус. Их топогра­фия, развитие, строение у людей различного возраста.

К центральным органам иммунной системы относят костный мозг и тимус. В ко­стном мозге из его стволовых клеток образуются В-лимфоциты (бурсазависимые). Костный мозг в системе иммуногенеза у человека рассматривается в качестве аналога сумки (bursa) Фабрициуса — клеточного скопления в стенке клоачного от­дела кишки у птиц. В тимусе происходит дифференцировка Т-лимфоцитов (тимусзависимых), образующихся из поступивших в этот орган стволовых клеток костного мозга.

Костный мозг, medulla ossium, является одновременно органом кроветворения и центральным органом иммунной системы. Выделяют красный костный мозг — medulla ossium rubra, кото­рый у взрослого человека располагается в ячейках губчатого вещества плоских и коротких костей, эпифизов длинных (труб­чатых) костей, и желтый костный мозг, medulla ossium flava, заполняющий костномозговые полости диафизов длинных (труб­чатых) костей. Состоит красный костный мозг из миелоидной ткани. В нем содержатся стволовые кроветворные клетки. В красном костном мозге разветвляются питающие его крове­носные капилляры

Желтый костный мозг представлен в основном жировой тка­нью, которая заместила ретикулярную. Кровеобразующие элементы в желтом костном мозге отсутствуют.

Костный мозг начинает формироваться в костях эмбриона в конце 2-го месяца. С 12-й недели в костном мозге развиваются кровеносные сосуды. Начиная с 20-й недели развития, масса костного мозга быстро увеличива­ется, он распространяется в сторону эпифизов. В диафизах труб­чатых костей костные перекладины резорбируются, в них форми­руется костномозговая полость. У новорожденного красный кост­ный мозг занимает все костномозговые полости. Жировые клет­ки в красном костном мозге впервые появляются после рожде­ния (1—6 мес), а к 20—25 годам желтый костный мозг пол­ностью заполняет костномозговые полости диафизов длинных трубчатых костей. У стариков костный мозг приобретает подобную консистенцию (желатиновый костный мозг). В эпифизах трубчатых костей, в плоских костях часть красного костного мозга также превращается в желтый костный мозг.

Тимус, thymus является центральным органом иммуногенеза. В тимусе стволовые клетки превращаются в Т-лимфоциты, В дальнейшем Т-лимфоциты пос­тупают в кровь и лимфу, покидают тимус и заселяют тимусзависимые зоны периферических органов иммуногенеза. Тимус секретирует также вещества под названием «тимический (гуморальный) фактор». Эти вещества влияют на функции Т-лимфоцитов.

Тимус состоит из двух асимметричных по величине долей: правой доли, lobus dexter, и левой доли, lobus sinister.

Топография. Располагается тимус в передней части верхнего средостения, между правой и левой медиастинальной плеврой. Верхняя часть тимуса лежит позади гру-дино-подъязычных и грудино-щитовидных мышц. Передняя по­верхность тимуса прилежит к задней поверхности рукоятки и тела грудины (до уровня IV реберного хряща).

Строение. Тимус имеет нежную тонкую соединительнотканную капсулу, capsula ihymi, от которой внутрь органа, в его корковое вещество, отходят междольковые перегородки, septa coriicales, разделяющие вещество тимуса на дольки, lobuli Ihymi. Паренхима тимуса состоит из более темного коркового вещества, cortex thymi, и более светлого мозгового вещества, medulla thymi, за­нимающего центральную часть долек.

В мозговом веществе имеются тельца тимуса, corpuscula thymici (тельца Гассаля).

Развитие. Тимус развивается в виде парного органа из эпителия головной кишки. У человека тимус закладывается в виде парного выпячивания эпителия III и IV жаберных карманов в конце 1-го — начале 2-го месяца внутриутробной жизни.

№ 122 Периферические органы иммунной системы. Их топография, общие черты строения в онтогенезе.

К периферическим органам иммунной системы относят миндалины, лимфоидные узелки, расположенные в стенках полых органов пище­варительной и дыхательной систем, мочевыводящих путей, лим­фатические узлы и селезенку.

Миндалины: язычная и глоточная (непарные), небная и труб­ная (парные) — расположены в области корня языка, зева и но­совой части глотки соответственно. Они представляют собой диф­фузные скопления лимфоидной ткани — лимфоидные узелки.

Язычная миндалина, tonsilla lingualis, непарная, залегает под многослойным эпителием слизистой оболочки корня языка не­редко в виде двух скоплений лимфоидной ткани. Границей между этими скоплениями на поверхности языка является срединная борозда языка, а в глуби­не органа — перегородка языка.

Капсулы язычная миндалина не имеет.

Небная миндалина, tonsilla palatina, парная, располагается

в миндаликовой ямке, fossa tonsilldris. Над миндалиной, находится надминдаликовая ямка, fossa supratonsillaris. На медиальной поверхности миндалины видно до 20 миндаликовых ямочек, fossulae tonsillae, в которых открываются миндаликовые крипты, cryptae tonsillares. Латеральной стороной миндалина прилежит к соединительнотканной пластинке, которую называют капсулой небной миндалины.

Глоточная миндалина, tonsllla pharyngedlis, непарная, располагается в области свода и задней стенки глотки, между правым и левым глоточными карманами. В этом месте складки слизистой оболочки. По срединной линии свода глотки проходит продольная борозда. Между складками имеются открытые книзу борозды, в просветы которых открываются протоки желез, залегающих в толще складок.

Трубная миндалина, tonsllla tubaria, парная, находится в области глоточного отверстия слуховой трубы. Миндалина представляет собой скопление лимфоидной ткани в виде прерывистой пластинки в толще слизистой оболочки трубного валика в области глоточного отверстия и хрящевой части слуховой трубы. Состоит миндалина из диффузной лимфоидной ткани и немногочисленных лимфоидных узелков.

Лимфоидные бляшки, noduli lymphdtici aggregdti, представляют собой узелковые скопления лимфоидной ткани, располагающиеся в стенке тонкой кишки. Залегают в толще слизистой оболочки и в подслизистой основе. Располагаются бляшки, на стороне, противоположной брыжеечному краю кишки.

Построены лимфоидные бляшки из лимфоидных узелков. Между узелками располагаются диффузная лимфоидная ткань, тонкие пучки соединительнотканных волокон.

Одиночные лимфоидные узелки, noduli lymphdtici solitdriti, имеются в толще слизистой оболочки и подслизистой основы органов пищеварительной системы (глотка и пищевод, желудок, тонкая кишка, толстая кишка, желчный пузырь), ор­ганов дыхания (гортань, трахея, главные, долевые и сегментар­ные бронхи), а также в стенках мочеточников, мочевого пузыря, мочеиспускательного канала.

Наибольшее количество лимфоидной ткани наблюдается в слизистой оболочке на задней по­верхности надгортанника, боковых отделов преддверия, желу­дочков гортани, черпалонадгортанных складок. Диффузная лимфоидная ткань имеется также в слизистой оболочке подголосо-вой полости.

№ 123 Иммунные органы слизистых оболочек: миндалины, одиночные лимфоидные узелки, лимфоидные (пейеровы) бляшки тонкой кишки; их топография и строение.

Миндалины: язычная и глоточная (непарные), небная и труб­ная (парные) — расположены в области корня языка, зева и но­совой части глотки соответственно. Они представляют собой диф­фузные скопления лимфоидной ткани — лимфоидные узелки.

Язычная миндалина, tonsilla lingualis, непарная, залегает под многослойным эпителием слизистой оболочки корня языка не­редко в виде двух скоплений лимфоидной ткани. Границей между этими скоплениями на поверхности языка является срединная борозда языка, а в глуби­не органа — перегородка языка.

Капсулы язычная миндалина не имеет.

Небная миндалина, tonsilla palatina, парная, располагается

в миндаликовой ямке, fossa tonsilldris. Над миндалиной, находится надминдаликовая ямка, fossa supratonsillaris. На медиальной поверхности миндалины видно до 20 миндаликовых ямочек, fossulae tonsillae, в которых открываются миндаликовые крипты, cryptae tonsillares. Латеральной стороной миндалина прилежит к соединительнотканной пластинке, которую называют капсулой небной миндалины.

Глоточная миндалина, tonsllla pharyngedlis, непарная, располагается в области свода и задней стенки глотки, между правым и левым глоточными карманами. В этом месте складки слизистой оболочки. По срединной линии свода глотки проходит продольная борозда. Между складками имеются открытые книзу борозды, в просветы которых открываются протоки желез, залегающих в толще складок.

Трубная миндалина, tonsllla tubaria, парная, находится в области глоточного отверстия слуховой трубы. Миндалина представляет собой скопление лимфоидной ткани в виде прерывистой пластинки в толще слизистой оболочки трубного валика в области глоточного отверстия и хрящевой части слуховой трубы. Состоит миндалина из диффузной лимфоидной ткани и немногочисленных лимфоидных узелков.

Лимфоидные бляшки, noduli lymphdtici aggregdti, представляют собой узелковые скопления лимфоидной ткани, располагающиеся в стенке тонкой кишки. Залегают в толще слизистой оболочки и в подслизистой основе. Располагаются бляшки, на стороне, противоположной брыжеечному краю кишки.

Построены лимфоидные бляшки из лимфоидных узелков. Между узелками располагаются диффузная лимфоидная ткань, тонкие пучки соединительнотканных волокон.

Одиночные лимфоидные узелки, noduli lymphdtici solitdriti, имеются в толще слизистой оболочки и подслизистой основы органов пищеварительной системы (глотка и пищевод, желудок, тонкая кишка, толстая кишка, желчный пузырь), ор­ганов дыхания (гортань, трахея, главные, долевые и сегментар­ные бронхи), а также в стенках мочеточников, мочевого пузыря, мочеиспускательного канала.

Наибольшее количество лимфоидной ткани наблюдается в слизистой оболочке на задней по­верхности надгортанника, боковых отделов преддверия, желу­дочков гортани, черпалонадгортанных складок. Диффузная лимфоидная ткань имеется также в слизистой оболочке подголосо-вой полости.

№ 124 Селезенка: развитие, топография, строение, кровоснабжение и иннервация.

Селезенка, lien, выполняет функции иммунного контроля крови. Находится она на пути тока крови из магист­рального сосуда большого круга кровообращения — аорты в сис­тему воротной вены, разветвляющейся в печени. Располагается селезенка в брюшной полости, в области левого подреберья, на уровне от IX до XI ребра.

У се­лезенки выделяют две поверхности: диафрагмальную и висце­ральную. Гладкая выпуклая диафрагмальная поверхность, fades diaphragmatica, обращена латеральыо и вверх к диафрагме. Переднемедиальная висцеральная поверхность, faces visceralis, неровная. На висцеральной поверхности выделяют ворота селе­зенки, hilum splenicum, и участки, к которым прилежат соседние органы. Желудочная поверхность, faces gdstrica, соприкасается с дном желудка. Почечная поверхность, faces rendlis, прилежит к верхнему концу левой почки и к левому над­почечнику. Ободочная поверхность, fades colica, находится ниже ворот селезенки, ближе к ее переднему концу.

У селезенки выделяют два края: верхний и нижний и два конца (полюса): задний и передний.

Селезенка со всех сторон покрыта брюшиной. Только в области ворот, куда обращен хвост поджелудочной железы, имеется небольшой участок, свободный от брюшины.

От фиброзной оболочки, tunica fibrosa, находящейся под се­розным покровом, внутрь органа отходят соединительнотканные перекладины — трабекулы селезенки, trabeculae splenicae. Между трабекулами находится паренхима, пульпа (мякоть) селезенки, pulpa splenica. Выделяют красную пульпу, pulpa rubra, располагающуюся между венозными синусами, sinus venularis, и белую пульпу, pulpa alba.

Развитие и возрастные особенности селезенки. Закладка се­лезенки появляется на 5—6-й неделе внутриутробного развития в виде небольшого скопления клеток мезенхимы в толще дорсаль­ной брыжейки. На 2—4-м месяце развития формиру­ются венозные синусы и другие кровеносные сосуды. У новорожденного селезенка округлая, имеет дольчатое строе­ние.

Сосуды и нервы селезенки. К селезенке подходит одноименная (селезеночная) артерия, которая делится на несколько ветвей, вступающих в орган через его ворота. Селезеночные ветви об­разуют 4—5 сегментарных артерий, а последние разветвляются на трабекулярные артерии. В паренхиму селезенки направляются пульпарные артерии диаметром 0,2 мм, вокруг которых распола­гаются лимфоидные периартериальные муфты и периартериальная зона селезеночных лимфоидных узелков. Каждая пульпарная артерия в конечном итоге делится на кисточки — артерии диаметром около 50 мкм, окруженные макрофагально-лимфоид-ными муфтами (эллипсоидами). Образовавшиеся при ветвлении артерий капилляры впадают в широкие селезеночные венуляр-ные синусы, располагающиеся в красной пульпе.

Венозная кровь от паренхимы селезенки оттекает по пульпарным, затем трабекулярным венам. Образующаяся в воротах органа селезеночная вена впадает в воротную вену.

Иннервация селезенки осуществляется по симпатическим во­локнам, подходящим к селезенке в составе одноименного спле­тения. Афферентные волокна являются отростками чувствитель­ных нейронов, лежащих в спинномозговых узлах.

Комплемент, состав, основные свойства. Пути активации. Участие комплемента в реакциях иммунитета. РСК, методика ее постановки и практическое использование

Комплемент является одним из важных фак­торов гуморального иммунитета, играющим роль в защите организма от антигенов. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена.

Состав:

1. Девять белков, составляющих собственно комплемент и обозначаемых поэто­му буквой С: С1…С9, причем С1-компонент состоит из трех белковых субъединиц (С1q, С1г, С1s), все остальные представляют собой единичные белковые молекулы. В составе молекулы имеется рецептор для связывания с Рс-фрагментом молеку­лы антитела. Антитела, относящиеся к иммуноглобулинам различных классов, вза­имодействуют с комплементами с различной степенью активности. Белки С5, С6, С7, С8 и С9 участвуют в организации мембрано-атакующего комплекса.

2. Регуляторные белки: С1Е1, С4bр, фактор Н, фактор I (инактиватор СЗb/С4b), белок S.

3. Факторы, участвующие в альтернативном пути активации системы комплемента: фактор В (протеиназа), фактор В (гликопротеин), фактор Р (пропердин) — у-глобулин, его обнаружил в 1954 г. Л. Пиллемер. Этот белок, образуя комплекс с эндоток­сином, в присутствии ионов Mg разрушает С3, поэтому был назван пропердином. Пропердин стабилизирует СЗ-конвертазу альтернативного пути.

Функции комплемента многообразны: а) участвует в лизисе микробных и других клеток (цитотоксическое действие); б) обладает хемотаксической активностью; в) принимает учас­тие в анафилаксии; г) участвует в фагоцитозе. Следовательно, комплемент является компонен­том многих иммунологических реакций, направ­ленных на освобождение организма от микробов и других чужеродных клеток и антигенов (на­пример, опухолевых клеток, трансплантата).

Механизм активации комплемента представляет собой каскад фер­ментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стен­ку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый.

По классическому пути комплемент активирует­ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и Сls. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4, С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента С3 активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется литический или мембраноатакующий комплекс который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути — образу­ется мембраноатакующий комплекс.

Лектиновыи путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов — субъединицы СЗа и СЗb, С5а и С5b и дру­гие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, СЗb — играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са2+ и Mg2+.

Реакция связывания комплемента.

Уникальная способность комплемента специфически связываться с различными по своей природе комплексами антиген + антитело нашла широкое применение в реакции связывания комплемента (РСК). Особое преимущество РСК состоит в том, что природа антигена, участвующего в ней (корпускулярный или раствори­мый), не имеет значения, так как комплемент связывается с Fс-фрагментом лю­бого антитела, относящегося к IgG и IgМ, независимо от его антительной специ­фичности. Кроме того, РСК очень чувствительна: она позволяет обнаружить количество антител в 10 раз меньшее, чем, например, в реакции преципитации. РСК была предложена в 1901 г. Ж. Борде и О. Жангу. В ее основе лежат два свой­ства комплемента:

1) способность связываться с комплексом антиген + антитело;

2) лизирование эритроцитов, использованных для получения гемолитической сыворотки.

РСК ставят в два этапа, и в ней соответственно участвуют две системы — опыт­ная, или диагностическая, и индикаторная. Диагностическая система состоит из исследуемой (или диагностической) сыворотки, которую перед постановкой реак­ции прогревают при 56 °С в течение 30 мин для инактивации имеющегося в ней комплемента, и антигена. К этой системе добавляют стандартный комплемент. Его источником служит свежая или высушенная сыворотка морской свинки. Смесь ин­кубируют при 37 «С в течение одного часа. Если в исследуемой сыворотке имеют­ся антитела, произойдет их взаимодействие с добавленным антигеном, и образую­щиеся комплексы антиген + антитело свяжут добавленный комплемент. Если же в сыворотке антитела отсутствуют, образования комплекса антиген + антитело не произойдет, и комплемент останется свободным. Никаких видимых проявлений связывания комплемента на этой стадии реакции обычно нет. Поэтому для выяс­нения вопроса, произошло или нет связывание комплемента, добавляют вторую, индикаторную систему (инактивированная гемолитическая сыворотка + эритроци­ты барана), и смесь всех компонентов РСК вновь инкубируют при 37С в течение 30—60 мин, после чего оценивают результаты реакции. В случае, если комплемент связался на первой стадии, в диагностической системе, т. е. в сыворотке больного имеются антитела, и произошло связывание комплемента комплексом антитело + + антиген, лизиса эритроцитов не будет — РСК положительна: жидкость бесцветна, на дне пробирки осадок эритроцитов. Если же в сыворотке специфические антите­ла отсутствуют и связывания комплемента в диагностической системе не произой­дет, т. е. РСК отрицательна, то неизрасходованный в диагностической системе Комплемент связывается с комплексом эритроциты + антитела индикаторной системы и произойдет гемолиз: в пробирке «лаковая кровь», осадка эритроцитов нет. Интенсивность РСК оценивают по четырехкрестной системе в зависимости от степени задержки гемолиза и наличия осадка эритроцитов. Реакция сопровожда­ется соответствующими контролями: контроль сыворотки (без антигена) и конт­роль антигена (без сыворотки), так как некоторые сыворотки и некоторые антигены обладают антикомплементарным действием. Перед постановкой РСК все компо­ненты, участвующие в ней, за исключением исследуемой сыворотки или антигена, подвергаются тщательному титрованию. Особенно важно ввести в реакцию точ­ную дозу комплемента, так как его нехватка или избыток могут привести к лож­ным результатам. Титром комплемента является то его минимальное количество, которое в присутствии рабочей дозы гемолитической сыворотки обеспечивает полное растворение эритроцитов. Для постановки основного опыта берут дозу комплемента, увеличенную на 20—25 % по сравнению с установленным титром. Титром гемолитической сыворотки является то ее максимальное разведение, кото­рое, будучи смешано с равным объемом 10 % раствора комплемента, полностью гемолизирует соответствующую дозу эритроцитов в течение 1 ч при температуре 37 °С. В основной опыт берут сыворотку, разведенную до 1/3 своего титра.

Непрямая реакция гемолиза используется как ускоренный метод обнаруже­ния специфических антител. В качестве носителя антигенов используют эритроциты. При наличии в сыворотке больного специфических антител сенсибилизированные эритроциты в присутствии комплемента лизируются.

Приобретенный иммунитет. Значение антител в формировании иммунитета. Роль различных классов иммуноглобулинов в иммунологических реакциях (агглютинации, РСК, нейтрализации токсинов и вирусов, развитии местного иммунитет).

Приобретенный иммунитет отличается от видового следующими особенностями.

-Во-первых, он не передается по наследству. По наследству передается лишь ин­формация об органе иммунитета, а сам иммунитет формируется в процессе индиви­дуальной жизни в результате взаимодействия с соответствующими возбудителями или их антигенами.

-Во-вторых, приобретенный иммунитет является строго специфическим, т. е. все­гда направлен против конкретного возбудителя или антигена.

Форми­рование приобретенного специфического иммунитета происходит благодаря коопера­тивному взаимодействию макрофагов (и других антигенпредставляющих клеток), В- и Т-лимфоцитов и при активном участии всех остальных иммунных систем.

Одним из характерных признаков приобретенного иммунитета служит появление в сыворотке крови и тканевых соках специфических защитных веществ — антител, направленных против чужеродных веществ.

Антитела являются уникальными сывороточными белками — глобулинами, ко­торые вырабатываются в ответ на поступление в организм антигена и способны с ним специфически взаимодействовать. Совокупность сывороточ­ных белков, обладающих свойствами антител, называют иммуноглобулинами и обозначают символом Ig.

Существует пять различных классов иммуногло­булинов: IgG, IgМ, IgА, IgЕ, IgD Они различаются по молекулярной массе, содержа­нию углеводов, составу полипептидных цепей, коэффициентам седиментации и др.

Высокая нейтрализующая активность антител, принадлежащих к IgG, свидетель­ствует о важной роли их в антитоксическом иммунитете. Антитела IgМ особенно активны в реакциях фагоцитоза с корпускулярными антигенами и поэтому играют существенную роль в антимикробном иммунитете, В реакциях нейтрализации виру­сов особенно активны антитела IgА, следовательно, им принадлежит большая роль в противовирусном иммунитете. Кроме того, секреторные IgAs обусловливают мест­ный иммунитет слизистых оболочек. Наконец, антитела IgЕ, обладающие гомоцитотропностью, опосредуют реакции гиперчувствительности немедленного типа.

Реакция связывания комплемента.

Уникальная способность комплемента специфически связываться с различными по своей природе комплексами антиген + антитело нашла широкое применение в реакции связывания комплемента (РСК). Особое преимущество РСК состоит в том, что природа антигена, участвующего в ней (корпускулярный или раствори­мый), не имеет значения, так как комплемент связывается с Fс-фрагментом лю­бого антитела, относящегося к IgG и IgМ, независимо от его антительной специ­фичности. Кроме того, РСК очень чувствительна: она позволяет обнаружить количество антител в 10 раз меньшее, чем, например, в реакции преципитации. РСК была предложена в 1901 г. Ж. Борде и О. Жангу. В ее основе лежат два свой­ства комплемента:

3) способность связываться с комплексом антиген + антитело;

4) лизирование эритроцитов, использованных для получения гемолитической сыворотки.

РСК ставят в два этапа, и в ней соответственно участвуют две системы — опыт­ная, или диагностическая, и индикаторная. Диагностическая система состоит из исследуемой (или диагностической) сыворотки, которую перед постановкой реак­ции прогревают при 56 °С в течение 30 мин для инактивации имеющегося в ней комплемента, и антигена. К этой системе добавляют стандартный комплемент. Его источником служит свежая или высушенная сыворотка морской свинки. Смесь ин­кубируют при 37С в течение одного часа. Если в исследуемой сыворотке имеют­ся антитела, произойдет их взаимодействие с добавленным антигеном, и образую­щиеся комплексы антиген + антитело свяжут добавленный комплемент. Если же в сыворотке антитела отсутствуют, образования комплекса антиген + антитело не произойдет, и комплемент останется свободным. Никаких видимых проявлений связывания комплемента на этой стадии реакции обычно нет. Поэтому для выяс­нения вопроса, произошло или нет связывание комплемента, добавляют вторую, индикаторную систему (инактивированная гемолитическая сыворотка + эритроци­ты барана), и смесь всех компонентов РСК вновь инкубируют при 37С в течение 30—60 мин, после чего оценивают результаты реакции. В случае, если комплемент связался на первой стадии, в диагностической системе, т. е. в сыворотке больного имеются антитела, и произошло связывание комплемента комплексом антитело + + антиген, лизиса эритроцитов не будет — РСК положительна: жидкость бесцветна, на дне пробирки осадок эритроцитов. Если же в сыворотке специфические антите­ла отсутствуют и связывания комплемента в диагностической системе не произой­дет, т. е. РСК отрицательна, то неизрасходованный в диагностической системе Комплемент связывается с комплексом эритроциты + антитела индикаторной системы и произойдет гемолиз: в пробирке «лаковая кровь», осадка эритроцитов нет. Интенсивность РСК оценивают по четырехкрестной системе в зависимости от степени задержки гемолиза и наличия осадка эритроцитов. Реакция сопровожда­ется соответствующими контролями: контроль сыворотки (без антигена) и конт­роль антигена (без сыворотки), так как некоторые сыворотки и некоторые антигены обладают антикомплементарным действием. Перед постановкой РСК все компо­ненты, участвующие в ней, за исключением исследуемой сыворотки или антигена, подвергаются тщательному титрованию. Особенно важно ввести в реакцию точ­ную дозу комплемента, так как его нехватка или избыток могут привести к лож­ным результатам. Титром комплемента является то его минимальное количество, которое в присутствии рабочей дозы гемолитической сыворотки обеспечивает полное растворение эритроцитов. Для постановки основного опыта берут дозу комплемента, увеличенную на 20—25 % по сравнению с установленным титром. Титром гемолитической сыворотки является то ее максимальное разведение, кото­рое, будучи смешано с равным объемом 10 % раствора комплемента, полностью гемолизирует соответствующую дозу эритроцитов в течение 1 ч при температуре 37 °С. В основной опыт берут сыворотку, разведенную до 1/3 своего титра.

Непрямая реакция гемолиза используется как ускоренный метод обнаруже­ния специфических антител. В качестве носителя антигенов используют эритроциты. При наличии в сыворотке больного специфических антител сенсибилизированные эритроциты в присутствии комплемента лизируются.

Антигены. Определение понятия, свойства, химическая природа. Специфичное антигенов. Детерминантная группа (эпитоп), шлеппер. Полноценные и неполноценные антигены. Гаптены и полугаптены. Факторы, определяющие антигенность белка и ее специфичность.

Антигены — любые вещества, содержащиеся в микроорганизмах и других клетках или выделяемые ими, которые несут признаки генетически чуже­родной информации и при введении в организм вызывают развитие специфи­ческих иммунных реакций.

Реализация антигенности зависит от способности антиге­на метаболизироваться в организме, т. е. быть объектом разрушающего действия макрофагов и взаимодействовать с другими клетками иммунной системы. Благода­ря такому взаимодействию происходит распознавание антигенной специфичности. Все антигены обладают специфичностью, т. е. определенными особенностями, гене­тически детерминированными и связанными с их структурой, почему они и отлича­ются друг от друга.

Для характеристики микроорганизмов помимо родовой, видовой и групповой антигенной специфичности очень важное значение имеет определение типоспецифичности антигенов. Типоспецифичность — особенность антигенного строения, которая обусловливает различия среди особей одной группы сходных организмов данного вида и позволяет выделить среди них серотипы, или сероварианты (серовары). Выявление сероваров дает возможность осуществлять очень тонкую дифферен­циацию внутри вида микроорганизмов.

Большинство современных классификаций патогенных микроорганизмов по­строены с учетом этих типов антигенной специфичности.

Изучение антигенных свойств различных сложных химических соединений — белков, полисахаридов, липидов, нуклеиновых кислот и т. д. — показало, что суще­ствует два типа антигенов — полноценные и неполноценные.

-Полноценные антигены обладают обеими функциями антигена: способностью индуцировать образование антител и специфически с ними взаимодействовать.

-Неполноценные антигены сами по себе способностью индуцировать образование антител не обладают, они приоб­ретают это свойство только после соединения с белками или другими полноценными антигенами. Такие неполноценные антигены называются гаптенами или полугаптенами.

Неполноценные антигены обладают только од­ним свойством антигена: они способны специфически взаимодействовать с теми антителами, в индукции синтеза которых они участвовали (после присоединения к белку и превращения в полноценные антигены).

Если взаимодействие неполноценного антигена с антителом сопровождается обычными иммунологическими реакциями, его называют гаптеном. Если неполно­ценный антиген имеет очень небольшую молекулярную массу и его взаимодействие с антителами не сопровождается обычными видимыми реакциями, его называют полугаптеном. О присутствии полугаптена в этом случае судят по тому признаку, что антитела, будучи связаны с полугаптеном, уже не проявляют себя в обычной реак­ции с полноценным антигеном (задерживающая реакция Ландштейнера).

Антигенное строение микробной клетки. Основные группы антигенов. Химическая природа антигенной специфичности. Значение изучения антигенов в серологической классификации микроорганизмов.

Антигенное строение микробной клетки. Обладая слож­ным химическим строением, бактериальная клетка представляет собой целый ком­плекс антигенов. Антигенными свойствами обладают жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплаз­мы, а также различные продукты белковой природы, выделяемые бактериями во внешнюю среду, в том числе токсины и ферменты. В связи с этим различают следу­ющие основные виды микробных антигенов: соматические, или О — антигены; жгути­ковые, или Н-антигены; поверхностные, или капсульные К-антигены.

Для медицинской микробиологии наибольший интерес представляют антиген­ные свойства бактерий, токсинов и вирусов. Результаты их изучения используются в практике получения высокоэффективных иммуногенных препаратов, а также для совершенствования методов идентификации возбудителей болезней.

Антигенное строение микробной клетки. Н-, О- и К-антигены, токсины и ферменты бактерий как антигены. Перекрестнореагирующие антигены. Принципы определения антигенного состава бактерий, дифференциация общих (групповых) типоспецифических антигенов.

Антигенное строение микробной клетки. Обладая слож­ным химическим строением, бактериальная клетка представляет собой целый ком­плекс антигенов. Антигенными свойствами обладают жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплаз­мы, а также различные продукты белковой природы, выделяемые бактериями во внешнюю среду, в том числе токсины и ферменты. В связи с этим различают следу­ющие основные виды микробных антигенов: соматические, или О — антигены; жгути­ковые, или Н-антигены; поверхностные, или капсульные К-антигены.

Видовая специфичность — антигенные особенности, присущие представите­лям данного вида. Отпечаток видовой специфичности имеют многие макромолекулы данного организма. Определение видовых антигенов может быть использовано для дифференциации особей одного вида от другого.

Групповая специфичность — особенности антигенного строения, свойствен­ные определенной группе особей внутри данного вида организмов. Групповые анти­гены, позволяющие различать отдельных особей или группы особей внутри одного вида, называются изоантигенами.

Гетероспецифичность — антигенная специфичность, обусловленная наличием общих для представителей разных видов антигенов. Гетероантигены обусловливают перекрестные иммунологические реакции.

Типоспецифичность — особенность антигенного строения, которая обусловливает различия среди особей одной группы сходных организмов данного вида и позволяет выделить среди них серотипы, или сероварианты (серова- ры). Выявление сероваров дает возможность осуществлять очень тонкую дифферен­циацию внутри вида микроорганизмов.

Большинство современных классификаций патогенных микроорганизмов по­строены с учетом этих типов антигенной специфичности.

Принцип работы иммунной системы

Иммунитет — это защитная система организма, которая позволяет ему сохранить свое постоянство, делает его невосприимчивым к чужеродным бактериям, вирусам, предупреждает влияние некоторых отрицательных факторов. Работа иммунной системы отличается сложностью, как и ее устройство.

Устройство иммунной системы

Иммунитет человека работает на основе специальных клеток, которые вырабатываются и созревают в центральных органах иммунной системы. К ним относятся:

  1. Костный мозг. В нем содержатся незрелые клетки, которые со временем могут превращаться в любые, необходимые организму.
  2. Тимус, или вилочковая железа. Небольшой орган, расположенный позади грудины. Здесь созревают T-клетки иммунной системы, производятся антитела.

Непосредственно созревшие иммунные клетки локализуются в других органах:

  1. Селезенка. Уничтожает старые, поврежденные клетки крови. Содержит здоровые лейкоциты.
  2. Лимфатические узлы. Продуцируют лимфу – специальную прозрачную жидкость, которая транспортирует клетки защитной системы в разные части организма. В момент активной борьбы с чужеродными организмами узлы увеличиваются в размерах, становятся болезненными.

Все основные функции иммунитета выполняют специализированные клетки. К ним относятся два вида лейкоцитов:

  • лимфоциты — распознают антиген, запоминают, уничтожают его;
  • фагоциты — поглощают все виды чужеродных частиц.

Внимание! Непосредственно лимфоциты имеют две разновидности: B-клетки распознают частицы и распространяют сигнал о появлении инфекции, а T-клетки уничтожают болезнетворные микроорганизмы.

Как работает иммунитет?

Принцип работы защитных систем организма прост и состоит из нескольких этапов:

  1. Как только в организм попадают посторонние частицы или антигены, B-лимфоциты начинают выделять специальные антитела, которые являются специфическим белком, способным заблокировать антиген.
  2. T-лимфоциты активизируются и выделяют клетки, которые способны уничтожить блокированный антиген.
  3. Антиген запоминается, а антитела, выработанные лейкоцитами, остаются в организме. Это помогает предотвратить аналогичную инфекцию.

Внимание! Отдельно стоят аллергические реакции. Они являются результатом действия иммунитета, который считает определенные частицы, попадающие в организм, вредоносными.

Защитная система организма классифицируется по нескольким показателям. По первому способу систематизации иммунитет делят на врожденный и приобретённый. Также имеется градация на естественный и искусственный. Естественная защита появляется после перенесенного заболевания, а искусственная— после прививок.

Существует гуморальная иммунная система, которая состоит из антител и источника их развития. А также клеточная — это T-лимфоциты и аналогичные им клетки.

Укрепление иммунитета

Чтобы укрепить защиту организма, необходимо соблюдать следующие правила здорового образа жизни:

  • в ежедневном рационе должны присутствовать пробиотики;
  • спать необходимо 7-8 часов в сутки;
  • следует разнообразить меню грибами и устрицами, поскольку в них содержатся важные вещества;
  • сохранять водный баланс и выпивать ежедневно не меньше двух литров чистой питьевой воды;
  • обязательно употреблять глютен и витамин Д;
  • снизить потребление сахара, который в значительной мере понижает защитные функции организма по борьбе с заболеваниями.

Внимание! Проблемы с защитной реакцией организма часто являются симптомом иммунного дефицита, в таком случае необходимо обязательно обратиться к врачу.

Иммунная система – это система органов, тканей и клеток, деятельность которых обеспечивает сохранение антигенного постоянства внутренней среды организма — иммунного гомеостаза.

Органы иммунной системы (лимфоидные) подразделяются на две группы:

1. Центральные (первичные). В них происходит формирование и созревание иммунокомпетентных клеток. К центральным органам иммунитета у млекопитающих относят костный мозг и тимус. У птиц – костный мозг, тимус, Фабрициева бурса.

2. Периферические (вторичные) – в них лимфоциты «работают», т. е. обезвреживают антигены. К этим органам относится селезенка, лимфатические узлы, лимфоидная ткань пищеварительного тракта (миндалины, пейеровы бляшки, солитарные фолликулы). Установлено, что иммунные функции выполняет нейроглия центральной нервной системы и кожа.

Важнейшие функции лимфоидной системы следующие:

· создание микроокружения для регуляции процесса созревания лимфоцитов;

· соединение разбросанных по всему телу популяций лимфоцитов в органные системы;

· регуляция взаимодействия разных классов лимфоцитов в органные системы;

· регуляция взаимодействия разных классов лимфоцитов и макрофагов в процессе реализации иммунных процессов;

· обеспечение своевременной доставки элементов иммунной системы к очагам поражения.

Гистологически лимфоидная ткань образована ретикулярной тканью, в петлях которой расположены различной стадии зрелости клетки лимфоидного ряда. Ретикулярная ткань выполняет опорную функцию и создает микроокружение для дифференцирующихся лимфоцитов. В своей основе ретикулярная ткань имеет многоотростчатые ретикулярные клетки и ретикулярные волокна (аргирофильные).

Иммунные клетки в лимфоидных органах представлены в основном лимфоцитами, которые рециркулируют между иммунными органами, тканями, лимфатическими сосудами, кровью и вновь иммунными органами. Причем считается, что в тимус и костный мозг они не возвращаются. Во многих лимфоидных органах присутствуют и плазматические клетки, которые легко узнать по небольшому ядру и большой цитоплазме. Также многочисленна и популяция макрофагов, относящихся к группе оседлых клеток. Это крупные клетки с бобовидным или круглым ядром и большой цитоплазмой. Все эти клетки происходят из стволовой кроветворной клетки, закладывающейся у человека и животных в стенке желточного мешка и мигрирующей в эмбриональные органы кроветворения – печень, селезенку, костный мозг.

Костный мозг.

Костный мозг является одновременно органом кроветворения и органом иммунной системы. Кроветворение (гемопоэз) поддерживается в течение всей жизни в костном мозге плоских костей – грудине, ребрах, крыльях подвздошной кости, костях черепа и позвонках. Основная масса форменных элементов крови образуется в красном костном мозге. Строма костного мозга поддерживает пролиферацию и дифференцировку эритроидного (в итоге – эритроциты), миелоидного (лейкоциты) и мегакариоцитарного (тромбоциты) ростков кроветворения. В костном мозге происходит дифференцировка всех лейкоцитов крови

Тимус.

У взрослых животных развитие многих клеток иммунной системы практически завершается в костном мозге. Лишь Т-лимфоциты требуют особых условий развития, которые могут быть обеспечены только в тимусе, куда предшественники Т-лимфоцитов поступают из костного мозга. Удаление тимуса ведет к тяжелым нарушениям иммунных реакций организма (прежде всего связанных с клеточным иммунитетом) вплоть до летального исхода.

У млекопитающих тимус представляет собой парный дольчатый орган, покрытый соединительно-тканной капсулой, от которой отходят перегородки, разделяющие ее паренхиму на дольки. У птиц отдельные дольки тимуса располагаются в области шеи по обе стороны пищевода. Основу долек тимуса составляет рыхлая сеть эпителиоретикулярных звездчатых клеток, петли которой инфильтрированы лимфоцитами. В каждой дольке имеется корковое и мозговое вещество. В наружном, корковом, слое располагаются незрелые размножающиеся клетки – лимфобласты, от которых происходят Т-лимфоциты (тимоциты). В мозговом слое долек тимуса звездчатые эпителиальные клетки преобладают над лимфоцитами. Здесь же встречаются тельца Гассаля (тимические тельца) – концентрические скопления продолговатых и веретенообразных клеток с большим ядром. Эпителиоретикулярные клетки образуют также гемотимусный барьер, препятствующий проникновению антигенов в тимус и в то же время пропускающий клетки лимфоидного ряда в кровяное русло.

Периферические органы иммунной системы.

К периферическим органам иммунной системы относятся селезенка, лимфатические узлы, лимфоидные образования органов пищеварения, дыхания, кожи, мочевыводящих путей, матки, большого сальника и других тканей. К лимфоидной ткани причисляют и особые субпопуляции лимфоцитов в печени. Лимфоидная ткань представлена практически во всех слизистых оболочках внутренних органов и даже в эпителиальных покровах тела и органов. Лимфоидная ткань образует первую «линию обороны» против чужеродных агентов. Ее расположение и строение преследует целью обеспечить максимальную защиту организма от них. Во всех периферических органах лимфоидной системы есть лимфоидные узелки, строма, образованная ретикулярной тканью, во многих из них есть соединительнотканная капсула. В лимфоидных органах периферической иммунной системы присутствуют все клетки, отвечающие за развитие иммунного ответа (Т — и В-лимфоциты, макрофаги, плазматические клетки). В эти органы иммунокомпетентные Т — и В-лимфоциты поступают из центральных звеньев иммунной системы.

Иммунная система. Иммунитет

Иммунитет — биологическая защита организма от генетически чужеродных клеток и веществ, поступающих в организм извне или образующихся в нем, т. е. антигенов. Антигенами могут быть микробы, вирусы, вредные примеси в пище и воздухе, отмершие ткани, измененные (мутантные, раковые) клетки и др.

К органам иммунной системы относятся все органы, в которых происходят образование и дифференцировка клеток (лейкоцитов и плазмоцитов), осуществляющих защитные реакции организма. Они получили также название лимфоидных органов, а ткань, составляющая их,- лимфоидной ткани. Такими органами являются: красный костный мозг (орган кроветворения и иммунной системы), вилочковая железа (тимус), скопления лимфоидной ткани в стенках полых органов пищеварительной и дыхательной систем, а именно: миндалины, групповые и одиночные лимфатические фолликулы кишки и червеобразного отростка, а также лимфатические узлы и селезенка. В иммунной системе различают центральные и периферические органы. К центральным органам иммунной системы относят красный костный мозг, являющийся источником стволовых клеток, дающих начало всем клеткам крови и иммунной системы, и тимус, где осуществляется дифференцировка Т-лимфоцитов (тимус-зависимые лимфоциты).

Часть лимфоцитов, попадая в селезенку и лимфоидную ткань, пролиферирует (размножается делением) и дифференцируется на B-лимфоциты и плазмоциты. Примерно 10 — 20 % лимфоцитов составляют так называемые нулевые лимфоциты, не подвергающиеся дифференцировке в органах иммунной системы. Достигая с током крови периферических органов иммунной системы, лимфоциты заселяют в этих органах определенные зоны.

В 1883 г. был открыт и описан И. И. Мечниковым клеточный механизм иммунитета — фагоцитоз. И. И. Мечников обнаружил, что лейкоциты способны «заглатывать» бактерии, мелкие частицы, обломки клеток и переваривать их. Фагоцитами являются нейтрофилы, базофилы, эозинофилы и моноциты. Моноциты могут мигрировать в очаги воспаления, где превращаются в гигантские макрофаги. Нейтрофил способен поглощать до 25 бактерий, моноцит — до 100.

Скопление мертвых клеток, бактерий, живых и погибших лейкоцитов образует густую желтоватую жидкость — гной.

Фагоцитоз — это могучий, но не единственный механизм иммунитета. В плазме крови обнаружены бактерицидные (убивающие бактерии) и антитоксические вещества. Так, например, один из глобулинов крови — интерферон инактивирует многие вирусы, пропердин и лизоцим разрушают ряд бактерий, цитотоксины убивают раковые клетки. Эти вещества обеспечивают гуморальный естественный врожденный иммунитет.

В течение жизни в организме после встречи с рядом болезнетворных агентов появляются специфические антитела именно против данного агента, также осуществляющие гуморальный иммунитет. В нем важную роль играют лимфоциты. У здорового человека в крови 3 г лимфоцитов, а в целом организме — 1,3 кг.

Лимфоциты различаются по функциям. Т-лимфоциты обладают способностью распознавать в организме «свое» и «чужое». На поверхности их находятся рецепторы, возбуждающиеся при соприкосновении с чужеродными белками. При этом они выделяют ферменты, разрушающие чужеродные белки и клетки (в том числе ткани трансплантированных органов и опухолевые клетки).

β-лимфоциты и плазмоциты при контакте с антигенами вырабатывают специфические антитела — иммуноглобулины, которые связывают и нейтрализуют чужеродные белки. Комплекс антиген — антитело захватывается и переваривается фагоцитами.

Введение человеку вакцин, содержащих специфические антигены, приготовленные из живых, ослабленных или мертвых микробов и вирусов, вызывает выработку в его организме соответствующих антител и, следовательно, невосприимчивость к определенной инфекции (бешенство, чума, оспа, корь, коклюш и др.) — приобретенный иммунитет.